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CUAPTER 1

INTRODUCTION

Problems of data aggregation have important implications for

educational research utilizing data from groups of individuals. Thi

investigation consid=_Irs the consequences of "change in the units of

analysis" where relations among individuals are to be inferred from

grouped data. In Chapter 1 five research problems are discussed where

an investigator might attempt to translate properties and relations

from one level of grouping to another. A -eneral strategy is described
4

for analyzing the conditions under which grouped data can be used for

inferences about individuals.

Data aggregation denotes the replacement of a set of numbers by a

smaller set of numbers or "aggregates". This term occurs repeatedly in

the lite- ture of economics and econome ries; macroeconomic theory is

based mainly on aggregated measurements.

Whenever distinct measures are combined, aggregation is involved.

In a study of foods, products such as bananas and oranges can be

combined into the category "fruits". A single aggregate index such as

per capita consumption ot all fruits can replace separate consumption

indices for bananas and oranges. In an educational context, the mean

aptitude score attributed to a school is an aggregate of the scores of

students.

Neasurements can be aggregated within a person as well as between

persons. In observational studies, the obs rvation pc iod is usually

9
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divided into time i-t-:vals. Behavior du g a given time interval is

represented by either the total_or average number of occurrences of the

behavior in that period. Such a score is an aggregate of instantaneous

observations.

Here, zyou ping of observations or, simply, grouping, will refer to

the aggregation of measurements over individuals (as distinct from

-gregation over time periods or commodities). More specifically,

grouping ls the replacement _f numbers representing observations on

individuals with a smaller set of numbers representing observations

aggregated over a group of the individuals. An example is the formation

school means from the achievement of students. The terms aggregation,

grouping, and aroins will henceforth Le used inter-

changeably.

II. Inferences Involving. Change_ in the Units J.Analysis

Grouped data are common in the social sciences. Sociologists focus

on relations among collections of individuals. Educational researchers

often use the classroom or school as the sampling unit and analyze

bet. een-Llass and between-school -elations. The study of grouped data

introduces no special obstacles when inference is restricted to the

level at which the data are analyzed. If a study concerns the relation

between the academic and social psychological cli ates of the school,

the school-aggregated achievement and attitude indices are the data to

relate.

On the other hand, educational and psyclological researchers are

usually concerned with relations among measurements on individuals.

The investigator may wish to determine the relation between student

aptitude and student achievement or between parent ' educat on and

10



student aspirations. These measurement- cannot always be exa-ined at

the individual level, possibly because those data are not obtainable or

identifiable for each person, or perhaps because of high cost of analysis.

Facing such problems, some investigators turn to data on groups to

estimate regression and correlation coefficients at the individual level.

Their conclusions extend the results of the analyses at the group level

to the relatio am individuals.

However, complications arise in translating properties and relations

from one level to another (Riley, 1964; Robinson, 1950; Scheuch 1966;

Theil 1954; Thorndike, 1934). These complications i--e discussed under

the general label "change in the units of analysis". Where this problem

arises, the investigator wishes to apply relations observed among unit

at one level -f aggregation to units at a different level (Blalock,

1964). The direction of inference can go toward larger Lgg-egates, such

as states or nations, or toward smaller ones -- the smallest being the

s ngle person.

Our concern is with research where relations at the individual

level are of interest, but data are aggregated over individuals according

to some specifiable grouping rule 1 The criterion for grouping can be

almost any characteristic of the individuals. Grouping can even bc

random. The choice of grouping procedure is dictated by the data on

band and the usefulness of a specific procedure for estimating indivi-

dual-level relations from these data.

'Terms such as "grouping procedure", "grouping method", "grouping rule'
"grouping technique", and "grouping strategy" will be used inter-
changeably in referring to the formation of groups. "Grouping
characteristic" and "grouping criterion" will refer to the character-
istic(s) from which the group classifications are determined. The
actual classification scheme which assigns observations to groups will
be called the "grouping variable". '



lems lnvolviii Chan,e In Units

We next describe five research problems in hich grouped

4

observations are used in estimating relations among measurements on

individuals. Missing observations, fallibly measured variables,

economy of analysis, anonymously collected information, and ecological

inference all create problems that data aggregation can alleviate to

some degree.

The degree of investigator control over the aggregation of data

is an i portant consideration. In certain contexts group membership

is determined in some natural way, eg., school attended or census

tract. It is thus beyond the investigator's control except for the

exclusion of sampling units and individuals (limited or no investigator

control). In other contexts the investigator can manipulate the

for ation of groups completely or partially). There are generally

more options for imp oving estimation in the latter contexts. In

Table 1.1 we indicate the degree of investigator crntrol over the

formation of groups for each problem. Why the methods of data

aggregation are used, how such methods are applied, and where they are

principally applied are also discussed.

A. Missing Observations

Missing data are to be expected whenever an inves'Agator collect-

large amount of information or uses a large number of subjects.

Missing observations are particularly lik ly in longitudinal studies.

Thus, if student achievement is assessed on three occasions, a

pa iicular student may miss one or more testing periods. The

investigator must th--_ decid- ho- to treat this hiatus in estimating

the relations among the tests, or the relations of the tests to otl

12



earch problems inv lying data aggregation.

Reasons for Data Principal

Resatch Ausegation jesgiRtion of_YPI-ication_ 404cation

I. Complete Investigator Control -- Group mamba

which is measured for all individuals.

A) IiISSING

'OBSERVATIONS

) FALLIBLY MEASURED

VARIABLES

) ECONOMY OF

ANALYSIS

Missing observations on

primary variables for some

individuals inhibit

confidence in analytical

results.

Random errors of

measurement associated

'with independent

variables attenuate

regression coefficients.

BUdgetary constraints make

analysts of massive data

bases at the individual

level impractical.

hip can be defined by any characteristic in the data set

Each missing observation on

a primary variable is replaced

.by the mean response on that

variable in some group to which

the individual belongs.

Different approaches.have been

suggested as part of the

general refinement of statisti-

cal procedures for handling

"errors-in-variables" problems.

Data are collapsed into a

smaller number of units by

some grouping rule.

Partial Investigator Control -- Group membership can be defined by

measured simultaneously with each primary variable .

) ANOMOUSLY

COLLECTED

INFORMATION

Data on certain primary

variables are collected

anonymously, making it

impossible-to-match- information can be used

observations on ptimary aggregate the data,

variables at the individual

level.

Longtitudinal and

cross-sectional

analysis of survey

data.

Statistical .

treatment of

measurement errors.

Analysis of census

'data and national,

regional, and state

school statistics.

ay characteristic which.-has bean

Characteristics measured

simultaneously-with.the

anonymouSly collected

Dafidential

student records 'and

responseS to.:

attitudinal

Oestionnaires.



Table 1.1, continued). Research probleMs'involVin- data aggregation.

Research Conte t

geasons for Data Principal

A lication

III. Limited or No lnvesti ator Control -- Group membership is determined prior to the collection and

analysis of data; group membership is directly pertinent to the study of primary variables.

(E ) ECOLOGICAL

INFERENCE

The sampling units of the

investigation constitute

"natural" aggregates of

individuals.

Disaggregation efforts are

generally a necessary

precondition to reasonable

inferences at the individual

level.

Analysis of school

and classroom means

where the school and

the class are the

sampling units;

data organized by

census tract.or

demographic region.



variables school characteristics, Leacher characteristics, home

environmen etc.).

Many investigators simply drop from _he data setany individual who

lacks information on any study variable., However, Elashoff and Elashoff

(1971, p. 1) find that "techniques such as ase deletion which assume

that oboervations are missing at random may be extremely misleading. If

the probability model governing the occurrence of missing data is complex,

the only adequate solution may be to and out what the missing observa-

tions are".

Some investigators use the mean of the'overall sample or the mean

of some subgroup to which the individual belongs as an estimate of the

missing observations. This "replate7-wiL 1-the-mean" strategy is somewhat

akin to the adjustments made in fpctorial analysis of variance (ANOVA)

experiments where a missing observation
k) is estimated by the

mean of the ijth cell

The replace-with-the-mean strategy is a use of 'aggregaied data.

For example, Kline, Kent, and Davis (1971), investigating the political
__-

instability of nations, replaced missing observatio s on stability and

literacy with means. These means--ere estimated from subgroups of

nations grouped by Variables measured on all nations (date of indepen--

dence, location, political modernization). So each nation -ith missing

Aata on stability is assigned the mean stability score estimated from

its subgroup on, say, date of independence.

The utility of replacing missing observations with group means

depends on the variables under study. The estimates generated are

functions of thp properties of the grouping characteristics their

internal distributional properiies-and their relations with the study

17



variables. A good estimate of the actual relations can be:obtained be-

-cause information relevant to the problem has been retained and informa-

tion loss thereby_reduced.. _On.the other-hand,

certain questions remain. In fact, the treatment of the-missing data can

be comPlicated -,- well as simplified by this particular:grouping strategy.

Fallibly Measured Variables,,.

It is _ell known that estimates of regression coe icients are at-

tenuated by random errors in the independent variables. Let 0
YX

the regression coefficient where X is the observed independent variable

and let. represent the reliability of-the measurement of X , the

persoWs t ue set:ire on-the independent -ariable. The usual procedure

to use Oyx/
RXX'

rather than t- estimate 0_
13YX YX.,

Madansky (1959) reviewed in detail Che literature on the fitting o

straight lines when both variables are subject:to error. He discussed

several grouping techniques that were proposed to handle problems arising

from an imperfectly measured independent variable in regression analysis.

Methods developed by Wald (1940) and Bar lett (1942) are perhaps the

most familiar.

Recently, Blalock (1964; 1970) has reconsidered the Wald-Bartlet

techniques and has advanced his own plan for using grouping with Tier-

fectly measured variables..-He recommends that the investigator group

on an "instrument' a variable which (1) affects the "true" independent

variable, and (2) does not directly affect the dependent variable. The

relationships of interest are then estimated from the grouped observe-

tions.

Both the Wald-Bartiett and Blalock grouping techniques are based

on the principle that measurement errors tend to cancel out within

18
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groups if the grouplug characteristic is highly related to the " ue"

values of the independent variable but-- is uncorrelated with the

measurement errors. Under these conditions, the er or portion of the

observed variance in the independent variable decreases when group

means are used, especially as the size _f the groups becomes large.

Thus the reliable portion of the variation increases through grouping,

and the regression estimates are in part disattenuated.

The merits of the approaches suggested by Wald, Bartlett, Blalock,

and others will not be debated here. However, their work suggestS that

the grouping of observations may be one way to resolve certain

measurement difficulties.

C. The Economy of Analysis

Grouping may be prescribed when there is an overabundance of

relevant d-ta, and the budget for analysis is limited. For example,

costs may prevent use of the complete data from the California State

Testing.Program in relating minority status to achievement. The

analyst may choose to sample districts, or to carry out a between

districts analysis. The latter analysis involves a change of units if

the investigator then makes interpretations at the individual level.

Economet icians have already developed sound principles

grouping where economy.of analysis is the chief concern (Prais and

Aitchinson, 1954; Cramer, 1964). The resulting loss of efficiency has

been only a few percent in the cases economists typically examine.

The successful use of aggregation in this context can be largely

attributed to the investigator's ability to choose the aggregating

variable. In most eases where economy of analysis is the eoncern, the

investigator can choose which characteristic(s) will define the groups

9
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of students, be it sex, classroom, school, or some other measure. The

investigator can secure meaningful estimates from aggregated data by

-choosing a grouping characteristic whose relations with the study

va 'ables best satisfy the conditions of efficient grouping.

Anonymously Collected Information

It is usually impossible to match data collected anonymously with

identified information on other variableg on the same persons. .For

example, student achievement cannot be compared with attitude when

responses to the attitude questionnaires are anonymous. If, however,

some auxiliary information about individuals can be collected along

with the attitude questionnaire, partial identification by group

membership can sometimes lead to accurate and efficient estimation of

the relations between attitudes and achievement (Boruch, 1971; Feige

and Watts, 1970; 1972). These estimates may be obtained from grouping

procedures similar to thOse used in contexts where the Investigator has

complete control over the choice of grouping procedure. For example,

students can be grouped by county of residence; then the betweencounty

regression of student attitude on student achieve. ent con be used as an

estimate of the individual-level regression. Or the student could be

asked to indicate the second. letter of his last name. What auxiliary

information is suitable depends on the study conditions, but a-"good"

grouping technique has certain general properties. Once these

properties are known, the investigator can bUild "good" grouping

characteristics into his study design.

E. Ecological Inference -- Aggregate Sampling Units

it is not uncommon to sample aggregates of individuals rather Alan

the individuals themselves'. For example, every student in a.classroom

2 0
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can be studied rather than students selected individually from the

student body. Scores can be obtained from student bodies of schools and

colleges, and between-school and bet7een-college relations analyzed.

City, county, and census tract means can be the sampling units in

sociological and economic studies.

Inferences drawn from aggregate sampling units can lead to what has

been called the "ecological fallacy" (RobinSon, 1950). The "ecological

fallacy" is the practice of inferring relations between properties of

individuals from the relations of group data (Alker, 1969; Selvin,,1958).

Although sociologists_and political scientists beginning with Robinson

have discussed "ecological inference". the writers in the educational

and psychological literature have often overlooked the issue.2

When sampling units are groups of individuals, between-group

analysis is logical even when the relations among measurements on indi-

viduals are the primary concern. The investigator lacks cont ol over

group Membrship and thus cannot select a suitable grouping procedure-as

in other contexts. In many instances, he is'unable to determine how the

required grouping procedure affects the variation and covariation of the .

study variables. Under these conditions, the possibility of inferring

relations at the individual level is limited.

In any case, the sampling of groups can present particularly

complex type of aggregation problem, since questions regarding sampling

20ddly enough, one of the first references to the inflationary effects
of estimating correlation coefficients from grouped data was by the
eminent psychologist E.L. Thorndike (1934). There appear to be no
further comments on the topic from educational and psychological
researchers'except the papers questioning the appropriateness of
estimating individual learning curves from grouping learning curves.

Estes, 1956).

21
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bias arise in addition to coacerns about level of inference. One

question may be whether the sa pled classrooms (counties) are represen-

tative of .the classrooms (counties ) in the universe to which one wants

to generalize. The investigator must clearly understand the basis for

his inferences to the individual level in order to be at all confident.

Otherwise, it may be best to make inferences at the g oup level or to

examine the individuals within groups, or to do both.

F. Applicability of Grouping Scheme in Different Contexts

This investigation offers a general scheme for identifying the

consequences of grouping. This scheme will enable an investigator to

choose the best grouping characteristics from a larger set when informa-

tion-about interrelations of each grouping characteristic and the study

-variables is known. Thus, our results are most applicable to problems

(A) through (D) where the investigator has at least partial control over

the aggregation procedure. The ordered grouping characteristics that

can occur in these contexts are also easier to handle since the deter-

mination of the relations of ordered characteristics to the study

variables is straightforward.

The extra difficulties of grouping when some data are collected

anonymously [problem (D)] largely arise from the inability to group-on

certain primary variables. It is best to group on the independent

variable in a regression analysis, but this is not possible when

observations on independent and dependent variables cannot be linked.

The general scheme will offer suitable alternative procedures in this

context that approximate the optimal grouping method.

The problems of ecological inference [problem (E)] are _he most

complex because there is-no choice.of grouping procedure and also

because the observable grouping characteristic usually has a nominal

22
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scale. Onr7Scheme offers lit-le direct guida ce on how to proceed in

this context, though it will usually indicate when inferences about

individual relations are out of the question. Ho_ever, the conditions

necessary to determine when such inferences are reasonable are unlikely

to occur unless the analysis can be carried out at the individual level.

If individual-level analyses are possible, ecological inference is

usually unnecessary.

The analytical arguments will be restricted mainly t- the

conditions prevailing when the investigator can choose among several

ordered grouping characteristics [problems (A) through (D)]. Our

hypothetical examples and empirical analyses will refer mainly to

problems of economy of analysis [problem (C)] and of anonymously

collected information [problem (D)). Application in other contexts

will be indicated where appropriate.

IV. Problems to be Considered

This.inquiry focuses on how grouped data can be used for inferences

about individuals particularly in educational research. The problems

discussed in the previous section affirm the need for a clear under-

standing of this technique. We cannot specify the problems exactly

until the technical terminology and notation are developed, but we can

identify previously unsettled issues to be considered.

Regression and correlation coefficients calculated from groupf-

data may be biased estimates of the corresponding individual-level

relations. Robinson (1950) showed that the bias in such correlation

coefficients is strongly determined by the ratios of the between-grou

variation of the variables to their total variation. Other researchers

(Blalock, 1964; Feige and Watts, 1972; Hannan, 1970 1971) have shown

2 3



empirically tha bias in a regression coefficient depends on the

14

relation of the grouping characteristic to the independent and dependent

variables.

We propose to trace rationally how aggregation bias.depends on the

interrelations among the variables of interest. Our structure, which

includes cases hitherto neglected, will be a taxonomy that con a ns the

possible interrelations between the grouping variables and the other

variables. In addition to presenting logical and empirical arguments,

as in previous studies,, we shall develop mathematical formalization for

the effects due to the choice of grouping variable. While emphasizing

bias, we shall also discuss efficiency and precision of regression

coefficients. Bias in correlation coefficients will be considered only

incidentally although a way of estimating zero-order correlations from

grouped data is also described.

Aggregation bias will be studied in both bivariate and multivariate

relationships. The effects of varying the number of groups and the

number of observations per group will also be considered. The latter

w- k will indicate which properties of grouping are most sensitive to

sample size. The intent is to formulate strategies for minimizing

information loss when grouped data are used for individual inference.

V. Overview of Later Cha ters

Earlier literature on estimating correlation and regression

coefficients from grouped observations is reviewed in Chapter 2. Most

of the work cited is dtawn from sociology and economics.

.In Chapter 3 we state for ally what is known about estimating the

simple linear regression coefficient from grouped observations and

extend previous work. Alternative models are discussed. After

2 4



extending the
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ural 119. appr ch (Blalock, 1964; Uanna-

1970, 1971; 1972) by incorporating a function of the grouping

characteristic as a variable in the sy -ten we present a taxonomy.

the -1,Itions between the "grouping variable" and the other study

variables. For_ las are then derived for the bias and efficiency of

variables from each taxonomic category. Finally, we discuss the

imp' i.cations of the results for investigators using grouped data.

Other aspects of the single-regressor case are considered in

Chapter 4 with emphasis on within-variable factors such as-the number

of groups and the number of cases per group. We also describe an

alternative scheme for characterizing the grouping process which

complements the treatment in Chapter 3. The chapter closes with a

discus-ion of ways to examine the effects of grouping on a nominal

characreristic.

In Chapter 5 we consider the case of two regressors and point

_toward-extension--- -any-number-of-additional independent -ariables.

The literature specific to the multivariate case is reviewed, and the

taxonomic approach is applied to the two-regressor model.

An empirical demonstration of effects in the single regressor

ease is presented in Chapter 6. Information collected from incoming

freshmenat a large Midwestern university servesns the data base.

First for a certain X,Y pair, the regression slope and its sample

variance are estimated from the ungrouped observations under a simple

linear model. Then one or another student characteristLc is used to

group observations and the Y-on-X regression slope and its sample

variance are estimated fro_ the grouped observations. The empirical

results are shown to conform to the conclusions derived analytically.

2 5
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The use of composites of estimates from different grouping pr--edures

is described; this improves estimation in ce tain contexts.
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Chapter 2

REVIEW OF THE LITERATURE
ON

GROUPING OF OBSERVATIONS

Historically, investigations of the effects of grouping on the

estimation of individual-level relations have followed two distinct

lines of inquiry. On the one hand, statisticians and behavioral

scientists (mostly sociologists) have considered this question while

studying the "ecol gical fallacy" (Robinson, 1950), the effects of

modifiable units (Yule and Kendall, 1950- and the,problema caused by

a "change in the units of analysis" (Blalock, 1964). These inve_tiga-

tions share an interest in the circumstances under which the analysis

of grouped units inflates estimates of individual-level relations.

Economists, on the other hand, have traditionally treated grouping

as a legitimate strategy for reducing the-cost of. analysis. Their

mathematical formulations have indicated that.grouping simply reduces

the efficiency of regression eitimates without introducing .any bias.

ThUs, they have hunted for the most efficient means of forming groups.

Prais and Aitchinson (1954) and Cramer (1964)- represent- this econometric

tradition.

In recent years, the distinctions between the approaches have

blurred as the methodologies of the behaviorial sciences and em rnetrIcs '_

converged. Hannan (1970, 1971; 1972) and Pei& anifWatts (1972) are

largely responsible for this convergence.1

Below, we review only the key prese ations fro_ the two lines of

inquiry. Summaries of previous work in t_ese areas have already appeared

1See also Burstein (1974)-and Hannan and Burstein .(1974).
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elsewhere.- We reserve the detailed discussions of certain key

investigations for a later chapter. In Chapter 3 we examine work by

Preis and Aitehinson (1954 ), Cram (1964) Blalock (1964), and Hannan

(1971; 1972) on the effects of grouping on the estimation of simple

linear regression coefficients. In Chapter 6 our study of the multi

variate case is juxtaposed with reviews of work byPrais and Aitchinson

(1954), Haitovsky (1966), and Feige and Watts (1972).

I. Behavioral Scientists' Persetives on G u 'n

The earliest articles on the effects of grouping indicated that

correlation coefficients increase when the size of units (e.g., census

tracts ) is increased. In 1934, Gehkle and Biehl showed how the

correlation of total number of male juvenile delinquents with median

Jmonthly rental in Cleveland, Ohio changed from -.502 as the city's 252

census tracts were successively grouped into larger regions. The

magnitude of the correlations increased steadily with the degree of

-aggregatien:.

252 200 175

NUMBER OF REGIONS

150 125 100 50 25

CORRELATION -.502 -.569 -.580 -.606 -.662 -.667 - ,,R5 -.763

2
-Selvin (1958), Scheuch (1966), Alker (1969), Allardt (1969), Cartwright
(1969), Shively (1969), and Iversen (1973) among others reviewed the
grouping literature in the behavioral sciences, focusing on Robinson's
(1950) work and related papers but offered little significant new
material. Among the above, only Selvin and Scheuch refer to related
studies by Geh/ke and Biehl (1934), Thorndike (1939), and Yule and
Kendall (1950). Johnston (1971) reviews the econometric studies.
Hannan's work (1970, 1971; 1972) combines a review of previous work
with contributions to the theory.

2 8
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Thorndike (1939) dem_ _.trated the problems associated with the use

of grouped data in the course of his investigation of the determinants

of intelligence. He pointed out that the correlation between two traits

(X and Y) in m groups equals the correlatiol between the traits for

the individuals composing the groups only under very-special circum-

stances. He added that the latter correlation was usually much smaller.

Thorndike then constructed an illustration with intelligence

quotient as X , and the number of rooms per person as Y , and the

twelve el_ tricts of a city as units for aggregation. Within each

district he created a sample of X and Y values such that within

districts r 0 . Wben observations at the individual level were

subsequently pooled over districts, r. .45 ; but the between-districts

correlation of X and Y averages was .90.

More than t_n years passed before questions regarding inferences

from grouped data reappeared. Yule and Kendall (1950) stated that if the

units of analysis were modifiable (e.g., characteristics of geographical

regions), the magnitude of a correlation depended on the unit chosen.

Accordingly, correlations "measure the relationship between the variates

for .the_apecified units chosen for the ork".(Yule and Kendall, 1950,

p. 312). Furthermore, they concluded that whenever units aregrouped

and ceirelations are calculated from summary tha acteristics of the

groups, such a_ averages, the correlations increase with the size of the

grouping. Conversely, coeffiA.ents decrease as the grouping-becomes

finer. As we shall see this generalization is now known to be

incorrect.

In addition to their citation of the Gehkle and Biehl example,

Yule and Kendall correlated the yields of wheat and potatoes from 48

agricultural counties in England in 1836 and successively halved the

2 9
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number of units by combining contiguous areas (forming 24, 12, 6 and 3

units). These groupings yielded correlations of . 19, .296, .576, .765,

and .990, respectively.

Sociologists and political scientists dominated the literature

dealing with grouping for most of the next twenty years. The early

sociological investigations typically focused upon bivariate relations

betweenqualitative variables where the observations were grouped by

location (e.g., state), by social organization (e.g. school), or by

temporal occurrence (e.g., quarterly statistic ). Investigators ere

generally concerned about the consequences -f using such data to make

inferences about the ungrouped observations. These analysts' problems

were amplified by their lack of control over the grouping process.

The article by Robinson (1950) on the "ecological fallacy" "...

triggered one of the liveliest methodological debates in the post

period" (Scheuch, 1966, p. 148). Alker (1969) described the surprise,

dismay, and rage of users of ecological data that Robinson caused with

his demonstration that statistical associations for aggregated popula-

tions can differ in magnitude and even in sign from those for individuals.

Robinson advised a distinction between "individual correlations", which

he defined as a correlation between indivisible objects, and "ecological

cor elations", where the statistical objects are defined as a group of

persons. He warned against treating ecological correlations as if they

were individual correlations. Robinson considered it to be an

"ecological fallacy" to use data gronped by territorial units as if

they were measurements on individuals.

The avowed purpose of Robinsen's paper was to provide a mathemati-

cal fo- ulat on of the exact relation between ecological and individual

correlations and to show how that 7:e1ation reflected upon the practice

3 0



of using ecological correlations as substitutes for individual correla-

-
tions.

3 His analyses on race vs. illiteracy and race vs.

Table 2.1 below) are illustrative.

Robinson s explanation can be summarized as follows:

vity (see

i) The individual correlation depends upon the internal

04ithin-cell) frequencies of the within-areas contingency

tables, while the ecological correlation depends upon the

marginal frequencies of the within-areas contingency

tables.

Since the within-group marginal frequencies from which the

ecological correlation is computed do not fix the internal

frequencies, which determine the individual correlation,

there need not be any correspondence between the individual

and ecological correlations.

According to Robinson, the mathematical relation between individual

and ecological correlations can be written as

[2.1] rE = kir -

where

=ki

and

k- =1

In these equations, r is the correlation between X and Y for

all N persons; rE is the "ecological" correlation, thejleighted

correlation between in pairs of X and Y percentages which describe

31n Robinson's Opinionl ecological correlations Were used_simply because
measures on individuals were not availableQthers, beginning with
Menzel (1950), pointed out that relations atiOng the propertieS of
collectives can have their own inherent value. Questions regarding
appropriate units of analysis remain outside the domain of this
investigation. We are only interested in inferences about the
relations at the level of individua_ when the analysis is perfor -d
on grouped data.
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Table 2.1. Correlations of illiteracy with race and illiteracy with
nativity at different levels of aggregationa.

Value of r Value of r
Descri tion of Units (illiteracy and race) (illit!Lay and_nativityl

97,272,000 persons

48 states

9 geographic regions

. 203

. 773

.946

a_
-The correlations arePearsonian fourfold correlations based on data
from the 1930 U.S. Census. The .three attributes are all dichotomous
(literate vs. illiterate; Negro vs. Non-Negro; Native-born vs.
Foreign-born).
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the subgroups in a foL fold tnbl and r the average of the

23

within-group correlations bctwcu X and Y , each within-group

cerrelation being weighted by group size. Al o, qi and are the

correlation ratios (the ratio of the bet en-group variation to the

total variation) which measure the degiee to which values of X and Y

cluster by group.

From equation [2.1], Robinson was able to deduce that -h_ indivi-

dual and ecological correlations are equal only when

[2.2] r, = k3r

where

However, since the minimum value of k3 is unity,6 the individual and

ecological correlations can be equal only if the average within-group

cprrelation is larger than the individual correlation. This is cbunter

to experience; hence there is no reason to expect equivalence of the

ecological and individual correlations.

6In the unlikely case that either correlation ratio equals 1, the value
of k is undefined. Otherwise, for any two numbers a and b

1 - ab

(1-a2)(1-b2)

a2 2 4. a2h2 C - 2ab a2b2 (multiplying by the denominator and
squaring both sides)

and thus, since we can let a = nx and b = ny, , the minimum value

of k3 is 1.
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Equation [2.1] also suggested Robinson how the ecological

correlation depended upon the number of subgroups. He pointed out the

following effects of consolidatinc, units:

i) The ecological correlation, decreases as the groups become

more heterogenous since r. increases directly with

increasing group size and the between-group proportion

of the variation equals 1 -

ii) The correlation ratios n; and n? decrees:2 as the
X 1

between-groups variation becomes smaller.

Of the two effects, the-changes in the correlation ratios

are considerably more important than the changes in rw

so that the numerical value of the ecological .correlation

increases.with increasing consolidation of units.

Aftei. Robinson, the emphas s in studies of the effects of grouping

shifted to a search for conditions under which the bias from grouping

can be minimized. Duncan and Davis (1953) developed an estimate of the

size of the error when aggregated data are used to predict individual-

level relations. They examined successive subdivisions of a territorial

unit (in their example, census trac -) and used the differences in the

ecological correlations that were obtained for the units of varying size

as the best estimate of the size of the ecological fallacy. They

concluded that "although different systems of territorial subdivision

give different results, the criterion for choice among these'results

is clear. The individual correlation is approximated most closely by

the least -aximum and the greatest minimum amongst the results from

several systems of territorial subdivision" (Duncan and Davis, 1953,

p. 666).

Good- n 1563; 1959) proposed the use of eco o ical regression

coefficients, rather than ecological correlations in any attempt

3 4
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define the circumstances that reduce the problems Robinson had identified.

Goodman's form of ecological regression is appropriate for variables

which are measured -nominally or ordinally, and his method though requir

ing some difficult assumptions, is more efficient than the Duncan-Davis

method of setting bounds.

Briefly, his method is as follows. Let Y be the proportion of the

total population who are illiterate, X be the proportion of the total

population who are Negroes, p be the proportion of Negroes who are also

illiterate, and q be the proportion of Whites who are also illiterate.

Finally, let the grOups represent samples from the population -f X and

Y values. Then, if (a) population parameters p and q do not differ

from area to area and (b ) E(Y) = Xp + (1 - X)q -- where X is as

defined above and E(Y) is the expected proportion of illiterate people

in an area -- the standard least-squares approach yields unbiased

estimates of p and q and thereby of the slope of the regression of

Y on X . Furthermore, if the values of Y are approximately normally

distributed with the same variance for each value of X , all standard

regression methods also apply.

ThUs according to Goodman (1959, p. 614), the only assu ption

necessary to justify his estimation procedures is that p and q must

be -ore or less constant for the different ecological areas in such a

way that the standard linear regression model can be applied". His

estimates of the individual-level parameters in the Robinson and Duncan-

Dav3- examples were a vast improvement over those from ecological

correlations or the Duncan-Davis bounds.

Blalock's examination o_ "change in the units of analysis" problems

was the first break from the consideration of exclusively nominal and

ordinal variables. Blalock (1964) used-a causal-framework to examine
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empirically the effects of grouping strategies on the correlation

coefficientr_andthareg-ressioncoefficientsbyxand b-XY He

placed artificial restrictions on the grouping criterion in order to

alter the variation among X and Y variables in specific ways: to

maximize variation in X , to maximize variation in Y .and to minimize

the effects of grouping on both variables (random grouping). Fourthly,

areal units were grouped by proximity.

Blalock demonstrated that rxy remained unchanged only under

random grouping. When Y was the dependent variable, both'iandom

grouping and maximizing variation in X left the estimate of byx

unchanged; but the variance of the slope estimate increased. However,

Ix_ was affected by maximizing variation in X . Thus, if one is to

infer individual-level relationships from aggregated data, individuals

have to be grouped in such a way that their scores on the dependent

variable are related to group membership only indirectly, through their

scores on the independent variable.

II. Econometric Pers ec;'ves on Crouping_7- "Optimal GrouPing"

Econometricians have traditionally followed an entirely separate

line of inquiry. The problems they have attempted t- solve are those

caused by an overabundance of data. They consider the practical

problems facing an investigator who can choose among a variety of

grouping methods. Preis and Aitchinson (1954) and Cramer (1964) have

done basic work to be recounted in detail later. Here, we provide only

a short summary.

Within a,general regression model, Preis and Aitchinson (1954) set

Oyx
1

Oy-allt to estimate the regression parameters for K

regressors, and the variances of the estimators from the individual and

6
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grouped observations. Following classical leas -squares procedures,

they showed that, whatever_the method of grouping (a) the resulting

estiMators are always unbiased, (b) the variances of the estimators

based on grouped data are always greater than those of the estimators

from the original observations, and (c) the efficiency of grouped

estimators is optimized by maximizing the between-groups variation in

the regressors.

For most of the 1950's and 60's, the Prais-Aitchinson results

defiled the State of the econometric knowledge en the topic. Cramer

(1964), following the Frais-Aitchinson approach, focused on strategies

for optimal grouping in the two-variable case without seriously

considering the possibility of bias. He evaluated certain efficient

grouping procedures under conditions common to economic survey analysis

and provided-empirical examples on optimal grouping from the literature

on economics.

Haitovsky (1966; 1973) did not follow the path laid out by Preis-

Aitchinson and Cramer. Instead; he studied alternative ways of

estimating multiple-regression coefficients when the data are in the

form of one-way classification tables for which the cell frequencies of

the cross-classifications are not available. His most important

contribution is his empirical evidence that g ouping on one regressor

can lead to biased estimators when the hypo hesized model contains

multiple regressors.

Recent work by Feige and Watts (1972) is even more definitive in

the multiple-regressor case. They considered the analytical consequences

of "partial aggregation" as a means of performing individual-level analy-

sis while preserving the confidentiality of data. Perhaps this new

substantive focus explains how they found differences between estimators
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of reg ession coefficions based on th- individual and grouped data, a

result contrary to the findings-of Preis and Aitchinson but in accordance

with Blalock's findings. They attributed the diff- e -es to one of three

sources: specification bias (o ission of regre -ors),

(ii) bias introduced by a grouping transformation that is not independent

of the disturbances, or (iii) sampling error introduced by the use of

less i formation in the grouped regression. They also provided new

criteria for judging the bias and efficiency of grouping methods. We

shall explore their work and Haitovsky's in more detail in Chapter 6.

Hannan (1970a, 1971; 1972) integrated the various approaches to the

aggregation proble s discussed herein. His ex ension of Bl3lockts causal

logic is particularly pertinent to future application of this technique

to the problems of grouping. The concluding remarks of Hannan's book

on aggregation (1971, pp. 116-117 ) identitied the areas where the

knowledge of grouping effec a limit& He called for expanding

our understanding of the u of estimating individual-level

relations from grouped dati, thL Problem of the present inquiry.



CHAPTER 3

ESTIMATION OF THE LINEAR RECRESSIV COEFFICIENT
FROM

GROUPED DATA IN THE SINGLE-REGRESSOR CASE

Chapter 3 focuses on the substantive factors that determine the

effects of using grouped data to estimate the relat ons that exist in

data on individuals. For the time being, we consider a linear model

with a single regressor X leaving multivariate problems to Chapter 5.

As a point of departure, the methods employed by Preis and

Aitchinson (1954) and by Cramer (1964) for examining regression coeffi-

cients from grouped data are presented. These methods represent the

general econometric approach t_ _he effects of grouping of observations

prior t- recent work by Heitevsky (1966) and by Feige and Wa ts (1972).

(See Chapter 5 for further discussion of their work.) Potential problems

with the earlier econometric approach are cited.- The approach of the

sociologists Bi-lock (1964) and Hannan (1970; 1971) is discussed as an

alternative to the econometric Conceptualization of grouping effects.

The remainder of the chapter is devoted to attempts to develop a

mathematical formulation that will account:for the grouping effects

described by Blalock and Hannan. The concept of a "grouping variable"

is introduced to emphasize the relations of the chosen grouping charac-

teristic to the variables of int_rest. The simple linear model is

replaced by a structure which incorporates an interval grouping variable

. A taxonomy is then.generated by considering possible linear rela-

tions of Z to the regressor X and of Z to the regressand Y after

adjusting for the relation of Z to X Four categories result when

3 9
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is pJaced prior to X and Y in the model.

The bias and, where appropriate, the relative efficiency of estima-

ting the regression coef icient (a ) at the individual level from theYX

gorup means are exa ined for each taxonomic category. The results indi-

cate that gr uping can yield either a biased or an unbiased estimator.

The model which incorporates the grouping variable is found to be better

suited for treating the problems of data aggregation than the analytical

methods of Prais-Aitchinson and Cramer. In particular, the altered

model leads to an explicit formulation of the expected bias due t_

grouping by a variable having specified relat ons to the X and Y

variables.

Terminolosy and Notation

Three types of variables are con idered: dependent, independent,

and grouping.- A dependent variable, or regressand, is an outcome" or

an "effect" in educational investigations. Only the case of a single

dependent variable Y) will be treated.

The independent variables, or regressors, are those the investigator

studies as "cause "dete mine -" or "predictors" of the variation in

the dependent va iable. Where there are multiple independent variables,

X (X X )] denot s the k-dim nsional vector representation

for the completa set, and X (q)
refers to any one variable; q = 1,

k Wlen there is only one independent variable, the superscript will

be dropped.

,Typically, values 'of the independent variable are assumed to have

Other writers make no formal use of a "grouping variable". Some speak
informally of "the method.of grouping" [see, e.g., Prais and Aitchinson
(1954) and Cramer 1964)].
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been es ablished prior to those of ihe dependent variable For ex mple,

parents' income is logically prior to the educational achievement of

their children. Income could be an independent variable since it is not.

an outcome u but rather a potential cause" of student achievement. The

model specified for the relations among variables takes this 'order'

nto account and differentiates between causes and outcomes at each

step in the chain.

There is-a grouping characteristic Inpracticá a function of the

grouping characteristic, which we ,shall label as assigns

the original observations to cardinally numbered groups,. The model to

be developed in this chapter requires that the values of Zberepra-

sented on an interval scale. In Chapter 4 we shall d scuss how the

model can be used to understand the bias introduced by grouping on a

va-iable rhat is merely nominal or ordinal.

If a grouping variable ormed from the student characteris ic
--

"number of years of mathematids" by use of the'rub i- 0-1' "2 -

"4 or more", 2 = 2 when a student has had more than 1 year-of mathematics

and less than 4.

belongs to group

More f

1

ally, when 2- is interval .an individua

if his value on the grouping characteristic

,gre_ter than U the;upper
-i -1

bound in the range fOr=gtoup ancL

of ha...range for oup JAI, 3less than L
i+1

the lower bound

2Ordinal grouping variables can be treated in the same manner as nominal
variables. Alternatively, a non-linear transformation can be performed
on the categories of the ordinal grouping variable so that it can be
treated as interval. .1n this case each non-linear transformation yields
a different grouping variable with different relations to the other
study variables.

31t is also possible to generate an interval g uping variable from an
unordered grouping characteristic by appropriate scaling procedures
(e.g., scaling of father's occupation ). This option will be discussed
in Chapter 4.



Moreover, the value of Z associated

the mean- of the group _he grouping characteris

Grouping characteristics

tive-waysT-Thts-a-single-characterfstic-can-yield-different "grouping

can (uniess.binary) be receded in

variables" Uhen necessary, is used to emphasize that-

particular grouping variable forms, groups, perhaps in contrast _

al ernative
)
, . AN Z

() may alsehe contrasted: with ,-an alternative
m

)

which divides the scale on the grouping characteristic d fferently..

A grouping v_riable can-be generated from-an independent variable

or a dependent variable, or in some other, way. -.In a study of the relatienH

of parental income (X) to educational -achievement -(Y) the,grouping

characteristic could he X and the grouping variable so ethingjike..

"decile rank, In the population, of parentg' ince e. " Here, th&inde

pendent variable and grouping variable are borh:funetions of parental:

income though their numerical forms differ. X may have been given in

the form of actual dollars of income or in terms of income -percentiles.-

The grouping variable Z has the possible values 1, , 10 ; so ten

groups can be formed.

Often, the grouping variable is distinct from both X and Y .

For exa pie, observations can-be grouped on "father's education",

"student's sex", or for that matter, -"third letter in student's last

name". Indeed, the values of 7, can be numbers assigned to persons at

random, in which case Z is unrelated to X and Y

Our models will specify relations among X, Y, and Z, rather

than among X, Y. and the grouping characteristic. This is done

because observations are actually grouped on a particular Z and two

grouping variables generated from the same grouping characteristic can

have different relations to X and I .

42



A. The otructure Among the Variables

The relations of interest.are the .-tructural relations of Y to

. The regression equations represent the presumed underlying

str cture ong the variables. For a given X there are three possi-
.

ble structural models for the relation between X and Y ) X

determines Y, (b), Y determines X , (c) there is a reciprocal

relation. (There may be other determiners of X iY denoted by

u . When necessary, a subscript is attached to u to identify the

variable influenced.) The trivial c se of no relation can be ignored.

This investigation concentrates on model (a) which can be

repre'sented by the path diagram

OyX

The arrows in t,d diagram indicate the direction of in luence; in this

case, X. determines . In a linear model, is the coefficient
YX

from the regression of- Y on represents all the-detelminers

of Y that are linearly independent of X . Hence u includes errors of

measurement in Y the effects on Y of variables other than X and

residuals due to any lack of fit of the linear model. Effects such as

are known as "disturbances" o "disturbance terms A diSturbance

-u
X could be added prior to X but this disturbance does not affect

the X-Y relation-of this model.

The relation depicted in model (a) can be identified by the

"s-ructural equation" Y'a-1- A-Xu
-Y

. This equation specifies
8YX

that Y can be partitioned into a constant part, a common par= due to

its linear relation to X , and a residual part, independent of X .
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The independent variable :X ot partit oned.

terms two factors can be chosen to account for,

defined by X and a factor

Notation

We hegin:With ,N per

Pgroups' on the basia:e

34

factor-analytic

and Y a factor

for the residual part of Y (that is

of this investigation the tie

designation of group memberships.'

contains n persons, n
1 .

X, and, Z. identify the:

group - 1, m

These can be divided

their Z values. Throughout most.

s recoded as ij for clearer

With the notation, Group

+ + n
m

= The labels

:ores of the jth member in the iti

Following a standard convention,

grand means and X , 77,-, and i
1.

and i represent

the means f _ groUp i Under,

the assum tions made in this mv ation, Z =
-ij

(Later there will be:otherances u, have group means'

The disturb.-

disturbance terms v and w , to which the same conventions apply.

Throughout the analyses, population,ymriances and covariances' are

denoted by a-320 q, axy, and so on. Also of intereat are population

correlation coefficients a and- ayz and the coefficient, B-XV -XZ

describing the regression of :X on ZH. The partial-regression

coefficientsand 0 are importan_ later. In the notation,I3YX.Z la*X

for partials, the effeets of the,variable placed after the "." 'aye

been-controlled when considering thd elation of Y to the other regressor.

Additional notatlon is needed when the sample of persons= is only

a subset of the population. For the total sample, a sum of squares or

sum of cross-products (deviated from the appropriate mean(s)] is

identified by SST( ) For example, SS_(X) denotes_ the total sum



of squared deviations of from the grand ean:

m n.

= E E1(X . R..)2
i=1 j-1 1J

Similarly, SSB(X) represen_s the between-group sum of -quares for

X:
m n.

SS (X) =
1=1 j=1

= E n (R. R )2
1- tO

i=1

We shall use SS
W
(X) to denote a within-group sum

ni
SS
W

= E X -

i=1

squares:

_e sum of cros products of X and Y will be denoted by _(X,Y)

[S(R,77) for between-group sum of cross-products]. V( ) and C( )

denote the sample variances and covariances -- the sum of squares and

sum of cross-products divided by N-1 , respectively. The sample

values of correlation coefficients are represented by-

so on.

C. Assumptions About Sampling

In the singl-mregressor case,

r and
XZ'

analYtidal -ork-is'based on two

sets of assump ions aboUt the sampling of observations, In the simpler

case we take our sample of N persons to be the population of interest.

The investigator can then determine $ from the ungrouped observa-
YX

tions.

:When observations are grouped on the basis of some Z , the

regression analysis'performed on the group means X.
1-

4 5
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(weighted-by gr up size generates the coefficient. 0-- from
YX

-the population of group means. n this case, where .the saMple equals

the population, our central questions have to do -ith the adequacy of

as a substitute for 0
'

, i.e what is the value of 0__ ?
YX YX YX

Alternatively, we may assume that the persons a e a_random samp e

from the population with the-constraints that the groups are an

exhaustive sample of the values of Z and the sizes of the groups,in-

the sample are directly propo Aonal to the sizes of -thegroupsJn the

population. These conditions amount to the:implicit assumption-that

we draw a proportionate stratified sample with strata defined-by the

values of Z . However, -e treat the observations as'if they are a

simple r ndomsample-from the _population. ,

Und r the latter sampling assumption-(sample population), the

estimator _f based on the ungrouped
111{.

YX
and its variance over a hypothetical

observations is denoted by

population of independent

random samples is denoted by V(byx) The sample estimator of

from the weighted group means is denoted by a;R , and V(B)

represents its variance over samples.

The bias fiom using. grouped data in this case is reflected in

the difference between the expected value of and

where expectation is over all i and j ]. The difference between

B--
YX

and b
YX

provides an estimate of the bias

The relative efficiency of byx and au

MSE(Bqj

When byx

determined by comparing V(byx) to

MSE(B.R ) = v(B) [H(B) 0yx)12 .

unbiased estimators of and
YX /3qR

8 )2 estimates
YX -YX

from YX

due to grouping.

as eatimators of

, where

and B are
YX

respectively, MSE(BqR) V(Bil)

the mean squared error from est ating Oyx

4 6
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Table 3.1 summarizes the alternative-sampling procedures and the

measures of precision in es 'Iating from _ groupediobservations under

each procedure.

When the data represent a subsample of the population, sampling

bias can contribute to the discrepancy bet een par meter estimates from

grouped and ungrouped data. Thus, we potentially confound grouping bias
0

with sampling bias. Treating a proportionate stratified sample as if

it were a simple random sample also offers hazards for-interpretation.

Later, when we talk about bias due to grouping, we do not make the

distinction bet een sampling bias and grouping bias. The combined

quantity is attributed to what we call grouping bias or discrepancy.4

The assumption of exhaustive sampling of the values of Z causes

no special problems when Z is an interval grouping variable based on-

an int rval grouping characteristic. However, whenever the characteris-

tic is nominal, such as school or classroom, the generality of conclu-

sions are restricted by requiring exhaustive sampling. The investigator

would like to generalize beyond the classrooms he samples. In any case,

the classrooms sampled should at least be randomly repr sentative of

some population of interest and lack of representativeness introduces

additional bias. This source of bias is also attributed to grouping

under the prescribed analytical procedures.

4Feige and Watts (1972) add specification bias as a third confounding
source for the difference between grouped and ungrouped coefficients.
In fact, Feige (personal communication) believes that what we call
grouping-bias is actually specification bias arising from thel -

omission of a relevant variable from the initial model. We do not

disagree with this interpretation. However, the generality of the
notion of-specification bias fails to capture the fact that an
investigator may be interested in estimating the simple linear
regression coefficient at the individual level, and his problem
arises mainly because he must analyze aggregated data.

4 7



Table 3 . Indices of precision of estimates from grouped data as ifunttion of satpling procedure.

-=

Nature of Sampl! De,sc_ri-tiorgn-procedure

Sample E Population The sample of N persons constitutes

the population.

Sample Population N persons are sampled randomly from

the population in such a way that

all possible values for 2 are

sampled in proportion to the sizes

of the groups in the, population.

Measure of Precision

Efficier

13Y):

Eff(B,b

V(b)

MSE(q

E(discrepancy ) Bias

48
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II. Re rpssion Coefficients to be _Contrasted

Between-groups regression coefficients can always be estimated from

grouped data. For example, asstr e that in an investigation of the

relation between achievement and incomei students are grouped on the

basis of fathers' education. In this situation, the averages of parental

income and student achievement at successive levels of fathers' education

and the group sizes n1 become the data for the regression analysis.

The investigator can then calculate Bq , the slope of the-regression

group means of achievement on _eans for income. This is an unbiased

estimate of PqR

However, the purpose of the investigation is to learn about the

ungrouped regression coefficient Rkx Otir question then is "what i6

the relation of au to ayx ?". That is, we want to know the conditions

under which the slope estimator (BR) from the between-groups reg ession

is an unbiased (or possibly just consistent) and efficient estimator of

the slope (ainc) from the regression of Y on X using the ungrouped

observations. The rest of thig inquiry moves toward a statement of these

conditionS.

III. The Bivariate Case Standard Model

We first present a standard s atistical model for the relation

Y to X in the ungrouped observations and in the group means. A

discussion of the formulation by Cramer (1964) follows5, with

digressions to call attention to important problems of application.

Section in par,cular, is devoted to the effec s of violating

5We concentrate here-on Cramer's bivariate regression analysis rather
than the multiple-regression work done by Prais and Aitchinson. The
latter will be_discussed in more detail in Chapter 5.

5 0



assumptions. on the Prais-Aitchinson and Cramer conclusions.

we.-discuss work by. Blalock .(1964). and-Hannan'(197Q 1971i. 1972) which

delineates the effects of-grouping in -a more realisticimanner than..the

Prais-Aitchinson and CraMer- treatments. Throughout this'seetion we

deal with the case of subsemple from the population.

A. Regression Analysis of the Ungrouped Observations

When a sample of N persons

population, the relation between Y and- X isdescribed by the

regression equa ion

drawn from the

where

[3.1]

2]

One set'of assumptions for this model (with random X ) is

Al. The X are random variables distributed independently of the

u

A2. The u are Independent random disturbances with E

and V(u ) = a2 for ail p

0

In this case the least-sluares estimator of from the sample

of J!Aividual data is given by

C(X ,Y )
[3.3]

P pb
YX V(X )

I (X - )(Y Y

pl (X
p

2

When [3.2] is substituted -for Y in [3.3] and the expectation

taken, we obt-in (by summation over persons)

5 1



E( by ) = B
YX V(x)

E

Since the disturbances u_ and the regressor X are assumed to be

indenen0,xor by Al, the second term is zero. So

E(byx

and b is an unbiased estimator of _en the u areYX 13YX

normally Ji butd, byx is also he maximum likelihood estimator.

Und3: ass'Amptiona Al and A2, the variance of byx can be shown

to be (5CC, u,p Goldberger, 1964, p. 267)

(h aYX YX

2

[-C.(X

11
,u

v(x) )

a2E

X_ -
p=1 P

If the data satisfy the assumptions on the X and u and the
_

sampling assumptions, then within the class of linear unbiased estima-

t rs of the linear regression coefficient of Y on b is the
YX

estimator with minimum variance (see, e.g., Goldberger, 1964, p. 269).

5 2
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B. Regression Estimation from :Data on Groups

Double subscripts are needed for the sample observations when aYX

seeis estimated from data on groups. The flpI are recoded as

.Seeti.n II.B.). Equation [3.1] becomes

[3.1]

That is, group i jth member) replaces

We can retain the definitions of
bY

and V(b
YX

) given by [3.3],
X

and [3.5], as no change in assumptions has been made about data at the

individual level. Note, in particularthat we have_assumed sam lin

individuals as i units and not sampl-ng of I _and of j within:

In estimating the regreasion coefficient from group means, any

ordering of the groups is ignored. The within-group ghted

the number of observations'in _he erou n , replace the (X.
j ij)l-

pairs, and the regression equation relating the Y. to the R. is
1-

estimated.Wshallhereafterreferto--asthe population value
Pyx .

oftheleast-squarescoefficientpredictingfromX,where the

means are weighted in proportion t- group ze in the population.

will denote the intercept in this equation.

The relation between Y. and
I

is described by the regression

equation

.6] Y. a*
.

u.
YX 1. 1.

This equation has the same form as [3.1] where now -he group means play

the role of "individuals". If the assumption about the u.. holds_for

the ungrouped observations, the analogous ,-tatements also hold for the

3



grouped observations.

We dean

and

c R.

0

N-1
In

E R. R
1. ..

N-1

where group means have been -eighted by their corresponding n4 . The

weighted least-squares estimator, B--

[ 7]

of 13,6l then

When 6] is subititu for Yi. ir

taken, we obtain

-
Since u. and1

E(B,7R-
.YR

E

[

C(R_.

V(Ri

and the expectation

are independent1y distributed, the second term is

zero, And -- is an unbiased estimator ofByx YX

Under the assumptions Al and A2 , the variance of the-groUped

-estimator is
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[3.9] V(0,71-c Byx

,u.

1.7(R. )
1*

m n

i=11=1

-

Bias and Efficiency of Estimating 8 from Grouped Observa-
tions

-Though Bu is n unbiased estimator of 5, , we are int-rested ,

YX

in its adequacy as an estimator of 6 the coefficient from the, _ _ ____ .__ __

ungrouped observations. If we let d = B, - 5
-YX YX

represent the discre-

pancy in esti ating fro B, then the bias from grouping,
YX YX

can be writte.

[3.10] 0 = E(d) = E(BT.R

Since E(b ) = Oyx , we may also wr±te

[ 3 .11] E(d) = E(BiR byx

According to [3.10], the biasin estimating 0yx from BiR is

ze o when the population value of the regression coefficient from

grouped data equals the population value of the eoeffieient from the.

55
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ungrouped observations. Furth more, by [3. ], the bias can be

evaluated by comparing the grouped estimator Bu with the ungrou?ed

estimator byk .

We also want to evaluate the efficiency of estimator byx relative

to stimator B in estimatinc, o the regression coefficient from un-_ _ _ .

grouped data. For the time being, we shall take as our index of the

efficiency of the grouped estimator, the ratio of the mean-squared error

errorto the mean-squaed B-- in estimating Byx namely,of by _ _

YX

[3.12] Eff(b
MHO

ByR = YX)

MSE(Buc)

V(b
YX

13 N2V(B-- ) + (A
--VR YX'YX

since bYX and B-, are unbiased es -a rs of a and

respectively.

Wien :72R ,-, Byx , the efficiency index [3.12] can be written as,a

o of expectations involving the between-group and total sums of

squares of X by substitution from [3.5] and [3.9]:

[3.13] Eff(by BiR
V(byx)

=
V(B)

ci2E
u

1

SS
B
(X)

From thc theorems on the components of variance, the total sum of

squares over all N observations can be decomposed in the following ..

5 6



manner:

SS
-T

(X) =

(Total)

so that

46

SS_B (X) SS
W
(X)

Between) Within)

SS_(X) < SS_(X)
T

Because all terms are non-negative,

and

Consequently, Eff(byx, BiR

1
< Et

SS (X)

and B -- is generally less efficient
YX

than byx .

Furthermore, accord _g to [3.13], a grouping procedure that maxi-

mizes the bet een-group sum of squares of the independent variable leads,

to more efficient estimates. That is, one prefers a procedure which

forms groups homogeneous in X
ij

So, f those grouping procedures

that yield unbiased estimators of 6yx , the one which maximizes

(minimizes) the between-group (within-group) sum of squares of the in-

dependent variable yields the best estimates.

D. Differences from Cramer's Formulation

The analytical work of Cramer (1964) differs in two respects from

what has been done so far. First Cramer assumes that the X.. are

fixed and given, making the additive disturbance the 'only- random element.

UndertheassumptionOffixed.,the sums of squares involving XX.
ij

are constants and the expressions for the variances of the estimators

canbesimplified.Thatiswhenthe_are fixed and given, 13.51Xij,

5 7



and [_ can be written as

and

respectively.

Moreover, when

estimator becomes

a2

V(b
YX- SS (X)

-T

V(B)

YX

SS (X)

the efficiency of the grouped

SS (X)
Eff( b_ B--

-B
=

-Yx, -YX SS
T
(X)

47

This is the correlation ratio.

Here, again, we see that grouped estimators that maximize the

betweengroup variation in the X
ij

, i.e. that maximize n2
'

yield
X

the most efficient estimators. Thus, conclusions about the efficiency

of esti ation are not affected by whether are assumed to be fixed

or random.

The other major difference in the Cramer formulation involves his

assumptions regarding the sampling of observations and the_effects of

grouping on the population parameters to be estimated. According to

Cramer, the sample of N observations 'Y ,) are "from the outset

divided into m groups of ni observations each, The X. are

fixed and giVen, and the Y
ij

are repeated samples defined by

[3.1) Y =a+B X +u
YX ij ij

5 8

[his equation (1)]



where a and 0 are unknown constants" (Cramer, 1964 p. 235, empha
YX

sis added). His assu_p ions about the disturbances u. are equivalent

to assumptions Al and A2 above.

Crame- further states that it follows from his equa on (1) that

ui.

That is he assumes that the act of averaging observations within groups

--does not alter the model assumed to be generating the observations and

thus does not affeet the parameters that are to be estimated. Thus,

from-his analysis, we would conclude that B4-k and b as given by--
YX

our [3.3] and [3.7], respectively, are both unbiaged estimates of

(This is also the conclusion reached by Cramer.)

In Section III.B., we state that the equation relating q. to the

-YX-

is

[3.61 Y. a
Y_

+ -u

where paraeters a and may differ from the parameters a and
YX.

for the ungrouped observations. This is an important distinction
'YX

that foreshadows our differing conclusions regarding possible-bias from

grouping. In the next section we consider how Cramer's assumptions

caused him to overlook several plausible grouping procedures that can

result in biased- estimation.

E. Implications of Assumptions for Equation [3.1]

Not all methods of grouping meet the conditions implied by

assumptions Al and 'A2 ; neither-Cramer nor Prais-Aitchinson notes

this explicitly. For example, if the data of students from the school

districts of California are used to estimate the-regression of student

achievement on parental income t is plausible that the mean distur-
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bance will v._ y according to school dist ice. This would mean that

E(u..ii,j) = p, , not necessarily zero or constant. But unless
ij

E( u ) = 0 , we are unable to simplify equations [3.4] and [3.8

whenX..arerandomvariables.Thatis,iftheu.have a non-zero
-3 1

expectation, b
YX

and are biased estimator_ _f their respectiveByx

parameters.

Heteroscedasticity and interdependence among the disturbances are

other plausible complications. Assumption Al no longer holds. Under

these conditions,.the disturbances can be described instead by the equa-

tion
Coy .,u.,

1-
020
u-

-where SI is an N x N covariance matrix wiose off-diagonal cells need

not be zero. The elements on the diagonal (variances) may vary accord-

ing to group (district) and the covariance within a group can be non-

zero; that is, E(u. = c2 0 .

i

When heteroscedasticity and interdependence of disturbances are

present, least-Squares estimators are still unbiased, but they no longer

have minimum mean-squared error. (cf., Goldberger, 1964, pp. 231-243).

this problem can be overcome by transforming the observations so that

they satisfy A2 and estimating the parameters from the tra.sformed

data. For example _31 heteroscedasticity is strictly a function of

differences in group s ze [that is when 0 diag _

weighted least-squares procedures using the grouped data perform the

necessary adjustments4 With more serious complications, as when

is unknown, econometricians generally place restrictions on Q to

permit its timation from the simple regress on model.

The violation of assumption A2 through covariation of regressor

6 0
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with disturbance has serious consequences for least-squares estimation

from grouped data. Covariation between the X . and the u.. can
1]

occur when the regression model is misspecified through the omission of

a variable related to both X and Y . It must then operate through

the disturbance term. That is, though the regression coefficient 0yx

from [3.1] is to be estimated, a better specification of the processes

at work is

Yij a °YX.W1Cij
W + u .ij ij

where Wii is the variable "omitted" from [3.1]. Given the above

the single-
BYX

regressor model has.expectation

YX 13YW-X
E(byx 0= +

where b. is the -amp e regression coefficient _of W on X (cf.
-WX

Theil, 1957).

The.misspecification becomes a problem when is estimated from

observations grouped on the omitted variable. By grouping on W (whi,

is at least partially masked by the
j

in [3.1]), the assumption of
i

independence of regressor and disturbance is violated at the grouped

level since the Wu axe related to both the X
ij

and the

a result, C(X1 u
i

0 and B-- from [3.7] is then a biased
-YX

As

estimator of

Finally, i- the present exa ple, the designation of a Single

constant 0 and the assumptions for the model represent an over-
YX

oimplification even for the ungrouped observations. Our model does not

consider the possibility that the Y-on-X slopes differ because of

school district effects. If differential district effects are observed,

6 1
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the analyst might best examine his data in some multivariate way.

F. Grouping on the Dependent Variable -- Ideas of Blalock and
Hannan

Before moving to our own approach to estimation from grouped obser-

vations, point out arguments by Blalock (1964) and Hannan (1971; 1972)

that run counter to Cramer and Prais-Aitchinson. Both Blalock and

Hannan have argued that systematic grouping methods can yield biased

estimators of regression coefficients.

Blalock (1964) based his objection to the "no bias" conclusions of

Prais-Aitchinson and Cramer on the findings by Robinson (1950) and

others that correlation coefficients are biased by grouping, and on the

relation of regression coefficients to the squared correlation coef-

cients. His reasoning was as follows:

1. Groupings which maximize variation in either X or Y

inflate the correlation:

2. According to Prais-Aitchinson and Cramer,,grouping on X does

not bias the estimate of
-YX

E(BIR ) = E(bY

3. The squared correlation r2 equals the product of the
XY

regression coefficients b
YX

and b

Similarly,

= b b
XY

2 _

r--
YX XY

4. Given the above, it follows that grouping on X inflates the

regrevsion coefficient:

-- bB
XY

6 2
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Blalock's conclusion from the above was that the regression coeffi-

cient is inflated when data are grouped on the dependent variable. This

apparently contradicts arguments that estimates from grouped observations

are always unbiased.

Building on Blalock, Hannan (1972) provided a particularly apt

description _of how bias can arise through grouping. He argued that bias

occurs when observations are grouped on the dependent variable Y When

variation in Y is maximized by ranking observations by their Y values

and then grouping "adjacent" observations, observations thaat have both

X values and high u values will be placed in the highest Y groups,

assuming Byx is positive. Similarly, observations with both low X

values and low u values are placed in the groups lowest on Y . Thus,

other determiners of Y are confounded with X so that C(X,u) can no

longer be expected to equal zero. Hannan stated that this correlation

between regressor variable and the disturbance violated the assumptions

and was the result of a specification error magnified by grouping.

Since the model at the grouped.level is misspecified, the least-sq ares

estimators a_e no longer unbiased.

Blalock's and Hannan's arguments are largely intuitive. In the

next section, we present a formal mathematical treatment which supports

the contentiens of Blalock and Hannan.

IV. A Structural Model for Deterrlialag_lhffects of _Grouping

A systematic procedure is developed for examining the consequences

of different metho of grouping observations. The procedure is an

extension of the "structural equations" approach by Blalock (1964) and-_

by Hannan (1971: 1972). First an interval grouping variable 7, is

added to the model-of 13.11. In other words, the rule by which the

6 3



individual observations are assigned to groups tre ted as a random

variable which may be related to other variables in the system. If

the rou in variable
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lated_to another variable the struc_ture

will specify that Z is io to that variable. It does not matter

that . may appear to be determined by, say. X in the sense that X

would be logically or temporally prior to Z if the three-variable

model Y = f(X,Z) were under investigation.. We visualize the grouping

process as one in which Z can "select" or "force" the observations

from the bivariate distribution of X and Y into groups. It is in

this sense that Z is prior to X and Y6.

The equations for the modified structure are presented below for

both grouped and ungrouped cases. In addition, general formulas are

derived for both grouped and ungrouped coefficients, their estimators,

and their variances. Even though we are investigating "a single

regressor", we have bere a three-variable system where Y can be

regressed on X and Z .

Next we consider how the relations of the grouping variable to the

other variables affect the usefulness of fl as an estimator of
YX. 3YX

Problems with regard to the scale and distribution of the variables are

set aside for the moment. A taxonomy will be set out such that grouping

variables from the modified structure fit into one of several mutually

exclusive categories defined by the relations of Z to X and Y

6Tbis interpretation of Z is in no sense arbitrary. The process
grouping systematically has much in common with the notion of
selection. In fact, LUtjohann (personal communication) -has suggested
that the grouping bias we discuss is essentially selection bias, the
result of a manipulated sampling of the observations of X and Y

because of their association with Z Recent work by Goldberger,
(1972) on selectiOn bias in evaluating .treatment effects with non-
random sampling also hints at the connection.

6 4
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As later sections will demonstrate, the use -f this taxonomic stru- ure

enables the investigator to reject many potential grouping variables by

examining their matrix of correlations and partial correlations with

the main variables in the study.

A. Structure with Z prior to X and- Y-.

The path diagram for the structure when Z is prior to X and

Y is

In this diagram, NI is the disturbance term representing all determin-

ers of X that are not linearly related to Z , and w is the distur-

banceterm representing all de erminers of Y that '.'are not linearly

related to X or Z . and E are the path regression
13YX.V YE.X -XZ

coefficients.

The eque-ions corresponding to the structure with Z incorporated

can be written

[3.14a) Y = a+0 X+ E
11

2 + w
-Z.X-

[3 4b) X = A + E__Z + v
-XZ

We recall that 0 and refer o regression parameters
YX.V YZ.X XZ

in a sy tem with several variables. Even though we include the grouping

variable Z this isan equation at the individual leVel; every person

has a Z
P

and v are disturbance terms with zero expected values

for all persons. w is assumed to be independent of X, Z , and v

and v is assumed to be independent of Z further assume that

6 5



both disturbance te- s are I --s edaq ic (i.e., for any two persons,

2

Wi

for any

_2
, a_2 - a-

vi N.72
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and independent. (This implies that

-sons, a = 0) and 0 .

w1w2 v1v2

Although we again write a for intercept term in [3.14a), its

value may differ from that in earlier equations. We let X represent

the intercept term in the second equation of the structural system.

Equat -n [3.14b] can be substituted into [3.14a] to obtain a

single equa ion for the regression7of Y on Z and v

[3.15] Y X
z

+ ( + 0 _)Z + v + w
--) _ -YZ.X YX

Equation [3.15] is actually a reparameterization of [3.1] where X has

been divided into two parts -- the part predictable from the grouping

variable Z and a residual part v . Equations like [3.15] are

generally called " educed-form" equations. This means that [3.15] is

in a form that cannot be reduced further by substitution of other

equations fro_ the structural syStem. Later on, we use reduced-form

expressions to simplify our analytical work.

In Table 3.2, expressions for the population variances and co-

variances of the variables in equations [3.14a] and [3.1413] are

provided. The corresponding reduced-form versions are enclosed in

brackets.

The regression coefficient relating Y to X -- the ratio of

02 as given in Table 3.2 -- is equivalent to the coefficient
X

given by [3.1]. As can be seen, that ratio involves the three

regression coefficients (8 ,6 --d a
-YX.Z YZ.X -XZ

02 and
v

and the variances



Table 32 , Covariance matrix for variables in equations [3.14a] and [3.14b] (Reduced forms in bracket

Variable Y X 2 x v

Y

2

v

2
0- ._a

2
4-YB_

YX.2 YZX 2.X.2

2 2

[(0 0 + 0 + [31 c
Y 2- 2 -AZ.X Z -YX'Z v

2
0 +

1X'Z X YZ.X X2

0 0 + 0 0
YX2 X2

+
X2 YZ.X --.

_2 2
0 _

Y2.Xa2 Y_ 2 X2

1 (0- -0 + 0
2-2]

YX.2 2 -Y2.X 2

c

2

w

(13YX.2avl

2 _
t

2

+ __]

w

2 ,

(Ix z

c E

-X2

2

-X2-2

0

2

ti

v

0

0

,

0
0
2

v
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By substitution

get

[3.16]

B. Revised Strncture for Weighted:Group Means

The structural equations for the meant ofgroUpa...
_

can be written as

17a] Y=c

[3.17b]

R +113 i
YX yz.X

These equationS are the same as [3.14a] and'[3.-14b] .exCep_ that grouped-

quantities have- been substituted for.their-ungrouped-..counterparts,.:. In

addition to the intercepts, there are still- six parameters,-

20 0_
Z 2

o_
X

, and Note that we specify the same
v

regression parameters as in [3.14 1, s.Lnce aye aging obs rvations

within groups does not alter the model underlying the generat

observations. (This is analogous to Cramer's assumption discussed in

Section III.D though now we operate with

model.)

Table 3. 3 contains the population values for the variances and

covariances of he variables in equations [3.17a] and [3.17b]. The

reduced forms are again enclosed in brackets.

a more co rectly specified.
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Table

Variable

Covariance matrix for variables in equations [ 17a) and [3 17b] (Reduced forms in brackets

2 2 .2 2 2 _

G- 5 G.= a-
YX.Z X 'IN -Y' YZ.X-Xl w

2 2 2 2,

a= 4- G- G-J
YZ X YX.Z v w

YX.I X YZ.X

2 2
( 0_

Y
G- + a-]

YZ.X X XZ YX.Z v

[(YX.Z Z Y X

2 2 2

[5 a- c-]
v

MMMM.........========MMM ... memw.=.=== . .. ..

2

2

[5
YX.Z

a'
v

j

2

....mi....... ==

2
a-

. . w.==.==== ........ .....

2
a-
y

7
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By substitution of the reducedform expressions from Table

-the regression coefficient relating 17 to R -- the ratio of to
-XY

can be written as

[3.18]

'0TfOring [3.16] and [3.18], we see that 13u .and .0yx differ in-

that between-group variances replace total variances. When our sample

constitutes the entire population (the first case in Table 3.1), the

discrepancy, or bias, 0 , can be found by substituting fret. [3.16] and

[3.18] for the appropriate terms in [3.10]:

[3.19] e = 0-- 0
YX -YX

13YZ

C. Estimator of from Individual Data
YX

In

Undrtheinodif structure, a simple random sample of N( 1 n,)
i=1 1

observations is drawn from the trivariate distribution f(X..,Y.. Z..)
13 13

generated by [3.14a] and [3.14b]. The sample regression estimator of

is given by
YX

m n.

R.- - 77

i-1 -1.

[3.10] byx
m
E X.. - R )2
i-1 il 13

7



where x = Xii - R and y .-= Y..
11

a- e deviation scores and

summation is ove- all N persons.

Equation [ 20] is a double-scripted version of equation 3.3

60

'An expression for the expected value of b in terms of parameter's of
-YX

the modified structure is found by substituting [3.14a] for Y. in
. ij

[3.20] (all variables in deviation form) and taking the expectation:

[3.21] E03
E)y

Ex21

ExCi3Y -Zx ÷BYZ-Xz

Ex2

Equation 3.21] is in a form that cannot be simplified withou

additional assumptions since, by [3.1413], and z may be related.

We can, however, examine the asymptotic properties of the expression

under the conditions that both Exz and Ex2 exist and Ex2 is non-

zero. By the Strong Law of Large Number

plim
Exz

Ex2

7

plim plim

where plim denotes the probability limit ( liM
-N 03-

of the enclosed

7 I am indebted to Professor Julius Blum for pointing out that the
Strong Law of Large Numbers is useful in this situation.

7 3



expressions. The righ hand side can be further simplified since

and

(
i-N-plm

Ex2
X

-xe
plim( E" 01-iM

zz2
a

Evz
= plim XE N P m B _02 + a

N XZZ vz

nee v and z -are independent

Therefore,

[3.22] b +
-Y -YZ. XE

61

Where, as expected, the right-hand side of [3.22] is the sa_e as the

right-hand side of [3.16].

The variance of b under the modified stucture can be wri en

as

V(byx) = E[byx

Substi_- ing [3.10] and [_ 2 ] i 3.23].

YZ X 2
+ 5

Ex

and, after substituting the deviation form of [ .14a] for y

7 4



V b
Exz

Ek2 jEk2

By expanding the right-hand side and applying the assumptions that-

is independent of x and z and E(w) =-0 , [3.23] can be:further

reduced to

V b E =
X 2

Ex-

.69

The last term in the above eXpression is equal to 62E[
ST(X)

1 ] by the
w

same reas-_'ng we used to derive V(byx) (Equation [3.5]) in Section

Exz
III.A. Also for the time being, we shall use the fact that is

tx2
the expression for the leastsquares estimator b

ZX
to aimplify the

equation for the variance:

V(byx = 02 _v
YZ.X

It is diffIcult to simplify [3.23] further because x is a fune-

tion of both z and v under the moat-general conditions. Later, we

examine the V(b
YX

under conditions where Z is assumed to be unre-

lated to X to Y.X , or to both. In these cases, the expressio- for

the variance of the estimator of 0_ from ungrouped data can be
-YX

simplified.

D. Estimator from Grouped Data

TheYandX.,from the sample of N observations drawn from
ij

s

the trivariate dis ribution f(X. , Y , are grouped on the\basis
ij ij ij ,

of the values of Each observation is then replaced by the' group

-
mean corresponding to its Z. value; that is, X. replaces X. and

ij i. 13

Y. . In this treatment, 2 - so that u2 =replaces Y
ij ij 1 Z

Furthermore, we assume that the group sizes in the sample -- the nits --

7 5



are proportional to the group -sizes.in the-population u..,that bias,has,

not been introduced through non-proport1onate sampling from grodps.

The equation for the 'sample regression coefficient Bu can be

written as:,
Ifl n.

E

1=1
[3,24] B -

-Yx
ii

m n
E E

i=1 j=1

ETc2

where.lower-case letters denote deviations of group means from the grahd
0-

means of the sample and summation is over all N observations. :Though

tt6n in a diffe_ent manner, equation [324] is si_ ly the double7

scripted version of,[3.7].

We now follow the s procedures used in Section IV.0 forlIngrouped
_

data in order to find the expected-value of the sample estimator from

grouped data under the modified structure. ::Substituting -the devfation

form of [3.14a] for in.[3.24] and taking the exPectation, we obtain

[3.25] E(Bia

Ti 4-- Oy

0
Yx.z YZ-X

E

YX.Z -YZ.X

since x and w and x and are assumed to be independent and

E(7) = ) ---- 0.

By the s- e reasoning used to derive [3=22], it can be shown that

an -ptotically

[3.26] plim(Bii
yx

4.

Yz.x xz 2
13 a

2
a-

The right and side of .26] is the same as the ight-hand side 3.181.

7 6
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An expression for the variance of Bu under _he modified structure

is found in the same fashion as, V(byx) :in:[3.23]. It can be shown. that

[3.27],, Vau ENR - E(13.7R))2

E E'i
Y_ X E;.2 Ei2

.
YZ.X -ZX

SSB

where B-- is the least-squares estimator from the regression
-ZX

on X over all N persons.

The only differences between the equations for grouped and ungrpuped

coefficients ([3.161 and [3.18]), their sample estimators ([3.211 and

[3.25]; also [3.22] and [3.26] for the asymptotic expressions), and

sample variances ([3.23] and [3.27]) are that sums of squares and

variances of the group means of Z and X replace the sums of square5

and variances of the corresponding ungrouped observations. And, since

and SS (Z) = SS
T
(Z) under the modified structure, the only

substantive changes involve variation of_the independent variable,

b and B- have been shown to be asymptotically unbiased estima-
-YX -YX

tors of a__ and
X

respectively, but the investigator wants to
-YX Y -

estimate 0 from a-- (when the sample equals the population) or from
YX YX

. In Section V.B we shall identify the conditions under which
BYX

and Bu is an unbiased estimator of Syx
YX

E. A Taxonomy for Classifying Grouping Variables

A taxonomy for comparing grouping variables can be formed by setting

various combinations of 0 _ and a. in [3.l4a] and [3.14b] equal to
YZ.X XZ

zero. The categories of the taxonomy reflect different sets of con-

siraints on the relations of Z to Y and X . Four categories of

7 7
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grouping variables can be distinguished:

I. Z Is directly related to both X and Y-X

a. 0) .

11. z is directly related to Y-X but not to X °YZ-X # 0,

III. Z is directly related to X butnot to Y-X
0,

xz

Iv. z is not related to either X or Y-X 0 = 0, =
YZ-X XZ

Figure 3.1 presents the path diagrams corresponding to the categories o

Yz

the taxonomy.

The categories of the taxone-y include all possible linear rela-

tions linking prior grouping variables to the regression of Y on X .

Certain of these categories represent_broader classes of variables. For

instance, any random-grouping procedure Will satisfy the conditions for

Category IV. Groupir, on.the regressor X is a special case of Cate-

gory III. Most systematic grouping variables belong to Category:I.

Grouping on,the dependent variable Y is a special case of Category I.

Any grouping Variable can be uniquely categorized if the variances-and

covariances of X , Y , and Z are known.

Under cert in conditions discussed in Chapter 1, however, no un-

grouped estimate of a is available. To see this, suppose that data
-YX

on X and 1 are collected anonymously on occasion 1 and data on Y

and Z are col1ected on occasion 2; Then
-X
a -a

'

e a and
Y X ' XZ

can be estimated directly _froth the data. But there is no natbral
clYZ

way to pair X and Y scores, and andthus0_cannot be
clYX -YX

estimated directly. When this occurs, the investigator can estimate

and 0 but not -0 He can o en guess whether 6 is
YZ -XZ YZ.X YZ.X



Category

8
X X

00 _00
.

Category Iii

r.
Yz.X

0 xzo

(b) Category 11

(z)

Figure 3d. Pith Diagrams Corresponding to the Categories of the Ta nomy.
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non-zero, and by doing so can judge wh ther grouping by Z . will yield

unbiased and-efficient estimates of a
l'Z'X

In Chapter 6, we shall

for (cf., Section II.0
-YX

of Chapter 6).

V. Bias_and.Efficienc_as_e Function of Taxonomic category-

We examine how the relations specified for the taxonomic categories

can affect the bias and efficiency-of-the-regression_estimates from

grouped data. First, the general formulas for bias'and efficiency fro

Section III.0 are developed for the modified structure. Then the

implications _f this formulation are considered for each category,

separately.

A. Bias and Efficiency Formulas

In Section IV.B, we presented the following expression foi the

discrepancy (bias) that results from grouping when the sample constitutes

the population:

[3.19] =
YX

/ 2
Z

2
0
Z

Y X XZ 2 2

°x/

ilen the data are a subsample from the population, the asympotic

expression for the bias from grouping found 'by comparing plim (B-)
YX

(Equation [3.261)-With plim(blx) (Equation [3.22]) ;has the same form

as [3.19]:

[3.28] plim(d) pli- riu pli_

/O a

2
_

YZ.X Z 2

axi

81



Also, comparing [3.25] with -[3.21], the expectation of the di' er-

ence between and b is given by
YZ -YX

[3.29] E(d) = E(B,R

Since

Similarly,

= E(Bu ) - E(byx

= [a 4- a
YX-Z YZ-X

m n
Exz = E E x_

1=1 j=

In

= Enx
1=1

Evz =

So [_ 29] can be written as

[3.29] E(d) =
YZ-X

13YZ-XE [

ETci Exz\

ER2 Ex2/

E3T-c2 E:2 )]

Ezv
Ex2
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/3YZ.XE

With the exception of the last term [3.29] now has the same form

and components as [3.19] and [3.28]. In each case, the bias term has

essentially the same straightforward interpretation if the between-group

and total variatiov. of X are both n n-zero. Ite_jrou

t s leads to biased estimation if all three of the _ollowin- conditions

hold:

(a_ ) The grouping variable Z has a direct relation t_o

X (13n 0)

The grouping variable Z has a direct relation to

Y.X (0yz.x 0) .

The ratio of the between-group variation of Z to the

between-group variation of X does not equal the ratio of

the total variation of Z to the totar_variation of X

Furthermore, since Z has been defined so that Z =
ij

rewrite [3.19] and [3.28j as

and

[3.19'] 0 = E(d) =

[3.28']

_2

(7'2 X..

_ X XZ Z nici
X X

plim(d)
YZ.X XZ

Thus, condition (c ) can be restated C.

, we can

(sample = populat on

_a ple 0 population

(c') The between-group variation of X does not equal the total

variation of 'X.-.



Other things being eqtal, the mag-' uda of the bias from groruping

i_c_eases directly as the relation of Z to X or Y.X incre-- or

as the varia if X is reduced by grouping. These three conditions

are not independent; in the next section, we explore some ramifications

of their interrelation.

The formula for the efficiency of b
YX

relative to B as an

estimator of
YX

can be found by substituting from [3.19'], [3.23],

and [3.27] into [3.12]:

[3 0] Eff(byx,Bu

1

MSE(byx)

MSECBTi,

V(byx

V(B) Ou

For certain categories, this complicated expression gill simplify

greatly as Section V.0 will show.

B. Examination of Bias for Each Category

Equations [3.19"], [3.281],and [3.29] can now be used to examine

each category of groupin3 variables for bias. The taxonomic oatego ies

are considered in order.
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1. Category 1 Z directly related to both X and Y.X

( 0 , Y 0).
13YZ.X X2

Category I includes ail grouping v, iables which have direct

relations t- both X and Y-X . An obvious example is that scholastic

aptitude (Z) may be related to achievement (Y) and to student academic

interests (X) .

A e complicated example occurs when two distinct classifita

tions are made on the same achievement measure; for example, define Y

as the observed score on achievement and 1 as the decile ralak on

achievement. Thus 2 will most likely be a Category I variable.

The broader cla_ification for Z creates a measure whose correlation

with Y is other than 1.0 or 0 after X is partialled out. If

Y is linearly related to X , 2 will also be related to X .

In general, the slope estimated froi data grouped on Category

var...able is a biased estimate of 8. . The magnitude of this bias is

'YZ.X °X2
andgiven exactly by [3.19'1 for known. values of B

-X

2
a- and can be approximated by [3.281] and [3.29] when the sample does

not equal the population.

Thus, when Z is a Category I variable, bias is given by the

general equations:

[3.19']

[3.2

YZ-X XZ

(sample a population)

2 2

X
o

-YZ.X X2 ' 2 2
o-o
X X



[3.29] 0 E(d

(samp_e population, N

sample 0 population
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Section V.A has already discuased the conditions under which bias

occurs. In Chapter 6 we shall examine the bias of the slope estimates

from several grouping variables by substituting empirical es imates of

the model parameters into equation [3.19'].

At this point, however, we can get some idea about the bias for

Category I grouping by examlning the bias in estimated coefficients

when the variables from the ungrouped model have been standardized

before grouping. Assume that the X , and__Z., are
ij 3=3

standardized. Let m groups of equal size n. be formed on discrete

values of Z so that Z.
iii

(1) a2 = = 1

8

Under these condition

The practice of standardizing the variables before grouping serves
two useful purposes. First, it places the regression coefficients
on a uniform scale (0 to 1.0). Second, the coefficientjrom the
regresSion of Y on X when both:have unit variance equals the
correlation between Y and X . This suggests a potentially
useful way to estimate zero-order correlation coefficients from
grouped-data is to regress Y on X when Ohe un6rouped variab es
haye been:standardized.



X7

2
a- = 0

2
/n

= 1 -

and

2 2 2 2 2
4

X -xz-Z v XZ

n-1 2
Xz

1]

where n is the number ofobservations per grour (held constant over

groups).

Aft_- substituting 1) and (4) in [3.19'], we obtain

[3.31] d =
Y2.X X2

(n-1)(1-piz)

(n-1)82 A- 11
XZ

73

where d denotes the discrepancy from estimating the regression coeffi-

cient for standardized observations from grouped data.

At this point we consider how the discrepancy varies according to

the relations _f Z to X and Y and according to the number of

groups farmed. To do this we assume that there is a pool of grouping

variables Z's , which have_been standardized and have varying

relationstoXandY(potentiallydifferent.and
f3YZ0X xZ

simplicity we let the number of,groups fo-_ed by a given 2 vary

according to the chosen grouping variable but we assumr that equal

siZe groups are formed.

Figure 3.2 bias, 0* is plotted aga nst & with
/3YZ-X

fixed at .1 for selected valuesnf n , where N = nm Is held

87
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Relation of X to Z
XZ'

Figure 3.2. Aggregation bias 0* as defined by [3.31]) as a
function of standardized and group size n

XZ(with fixed at .1).
--X

88
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constant. A comparable family of curves can be generated for any value

f 0_ curves are roughly sym -trical for small n and-YZ.X The

become highly positi_e14 skewed fo- large n This is as expected

since the groupings become coarser and less representative of the

=grouped observations as u gets larger, for any set of-fixed ela-

tions between Z and X and YX .

Table 3.4 indicates the bias for several values of standard-

ized latyz.x , standardized 0 , and n . An exa_
'XZ

nation of the

tabled values leads to the following conclusions:

1) For any _fixed valuesof0_____and 0 , bias increases
-YZ.X -XZ

th n (except = o or 1 ).
YZ.X 'XZ

For fixed (not 0 or 1) and n , bias increases with
XZ

aYZ-X

'For fixed a
-YZ.X

0 or 1) and n , bias first increases

and then decreases as 0 goes from 0 to 1.

Minimizing the direct relation of Z to Y.X and maximizing the

direct relation -f Z to X is the safest way to reduce small bias.

approacheq its maximum rapidly even for small Values of n .

Large n is less da aging when is large and 0_
XZ -YZ.Z

though the necessary value

For n 500 and 0_
YZ.X

is small,

(3.XZ
increases rapidly with B .

-YZ.X

R must be greater than .60 to have
'XZ

bias less than .1 . For n = 500 and
RY2.X *2 ' °)(Z

must be

greater than .78 to achieve the same results.

The bias from Category I grouping can exceed 1 with large n

and Oyz.x Oxz . This should be a further --arning against choosing

a grouping variable strongly related to Y.X and against concentraing

9
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Table 3.4 Bias in eStimaLin- standardized row_ession coefficient

8yx from 1.;rouped data as a function of group size,

standardized 5 and standardized

Group
Size

.2

2

2

4

5

11

20

50

100

500

.037 .060

.103 .129

.132 .150

.274 .214

.415 .248

.636 .277

.766 .288

.914 .298

* = a a
YZ.X-XZ

(n-1 )(1-X2

(n-1)V =I- 1
X2

- Magnitude of the Biasa

.5

.8

.035 .093 .150 .088 .148 .240 .140

.059 .258 .323 .148 .412 .516 .236

.065 .330 375 .163 .528 .600 .260

.078 .685. .535 .195 1.096 .856 .312

.083 1.038 .620 .208 1.660 .992 .332

.087 1.590 .693 .218 2.544 1.108 .348

.089 1.915 .720 .223 3.064 1.152 .356

.090 2.285 .745 .225 3.656 1.192 .360

9 0
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observuLions in a few large groups. On the other hand, the relatively

small bias expe ted with small offers some hope for reasonable
YZ-X

estimates from data grouped by Category I variable.

Category 1I Z directly related to Y'X but not to X

74 ' 13XE 0)

Category II contains grouping v riables Z which are related to

Y 0)
and are not related to °XZ

X = 0) . Since 6
XZ

= 0 ,
(13YZ.X 4

Exz = CH-and regardless of whether the sample equals the population,

the bias 0 = E(d) = 0 , as long as ET:2 0

Thus estimates derived from data grouped by a Category II variable

are unbiased unless there is no between-group variation in X . This

conclusion is not surprising. When Z is a Category II variable, we

are considering the standard model of equ -ion [3.1] where the "other"

det_rminers represented by u have bean divided into two parts (Z and

_) both independent of X . Unbiased estimates are expected under

these c-

It is possible to have no between-group variation in X for a

Category II variable. This occu when the grouping variable lies in

the X,Y plane; i.,e., if R.XY? = 1 . In this case

since 6 = 0 thebias from grouping is indeterminate as can b-
-XZ

seen-by substitution into [3.191]:

E2 m 0 and

There is_ no simple way to consider furthei the magnitude of the bias.

There is some evidence based on simulation studies that bias estimates

fluctuate wildly in this special case.
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Category II vz iables are har_ to find. None of the more than 200

parameter
`ZZ*X XZ

from the empirical data

discussed in Chapter 6 satisfactorily meet the conditions for Category

II grouping. Such variables could be constructed by orthogonalization,

but other categories of variables yield unbiased estimators with greater

efficiency. Henceforth, Category II will receive little attention.

3. Category III -- Z directly related to X but not to YX

°)

Category III includes variables which are related to Y only

through X . Systematic grouping on the independent variable falls in

this category. A Category III variable may be an explicit ordered

function of X '§uch as the decile rank -f X , and if fio, the within-

group distributions of X do not overlap. It is also possible that a

Z from Category III involves some laudom component (v) which allows

the within-group distributions of X to overlap. The presence or

absence of overlap is irrelevant in the determination of bias, but

can affect efficiency.

Since 8.YZ.X

reduce to

and

0 for Category III, equations [3.14a] and (3.17a]

Y w
YX-

-
w

These equations are the same as [3.1] though the disturbance terms have

been relabeled. Thus for Category III grouping, the stanthird model and

our modified structure with tle grouping variable incorporated are the

same, and esti the same 6 .

-YX

From equations [3.19'], [3.281], and 13.29'1, it follows that when

Z is a Category III vari-io

9 2
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and

E(Bi;R

plim = b g
YX

Yx

e E(d) = 0

Thus the lea -squares estiMators of
YX

from data grouped on a

vaL able Z which is related to X but not to Y.X are unbiased

any value of Syx _

The bias and efficiency resulting from grouping by a function of

X (Category III grouping) have been studied extensively, the most

pro inent being the Prais and Aitchinson study (1954). (Most variables

systematically related to X do not strictly satisfy the condition

0 and thus exhibit some minimal bias.) Our conclusions con-
°YZ-X

firm those of earlier write s that Category III variables yield the

best estimates under a very general set of analysis situations. The-

e_timates are always unbiased and can be highly efficient (see Section

-
V.C.2). If such variables do exist in a study, the remaining decision

should focus on choice.a: ng Category III variables, and, once a

variable is chosen, on the definition of the classes. These problems

are cons,dered in Chapter 4 under the heading of within-category

factors'

4. Category IV -- Z not linea ly related to X or Y.X

°Y2-X 13n

Category:IV contains all variables which have no linear relation

to either X or Y . A Category IV variable can be generated by

assigning numbers randomly to Individuals, such as a student ID..

Category IV grouping, alternatively called random grouping, generates

random groups of (X,Y) observations.

9 3
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When

and

Hence,

17.
- 0 and it follows that

E(Bk ) E(byx

plim plim(by
YX

0 E(d) 0

for any Category IV variable, and BE is an unbiased es imator

13YX

The interpretation of this result is straightforward. Estimating

from the means of
YX randomly formed groups is statistically

equivalent to estimating from a sample of size a drawn randomly

from the N observations or from the m s ratum means where the strata

have been randomly formed (Hansen, Hurwitz, and Madow, 1953). In either

case, the random process does not alter any pre-existing relations among

the variables. All variances and covariances a- ong variables decrease

in proport -n to the number of observations in a group for fixed group

size n fo_ Category IV grouping. This proportionate reduction in

magnitude does not alter the estimate.of the regression coefficient.

Category IV vari.ables are not the best choice for grouping when

efficient esti ates are desired because of the difficulty of obtaining

an adequate number of groups to overcome the marked efficiency reduction

(see Secti V.C.1.). In certain instances, however, Category IV

Variables may be the only recourse for the investigator who has lim ted

infol-ation about other ways of forming gronps.

C. Efficiency Consid -ations

Equation (3.12j defines efficiency. Below we evaluate the effi-

ciency for each category of gronping variables.-

9 4



1. Category

For Category IV variables, since B._ _ = 0 and = 0 ,

YZ.X -XZ

equation [3.11'] becomes

Eff(b _ 11,
YX,-YX A(X)

81

Several investigators have already provided simplified expressions

for the efficiency of random grouping under the assumption that the X

are fixed and given. An especially cogent derivation by Feige and

Watts (1972) is presented below, using our terminology and notation.

Feige and Watts' derivation is based on the theory of sampling from

a finite populati n. The set of N Observations is regarded as a pop

ulation. If the observations are assigned randomly to m groups of

each group, many groupings Ware possible. The expeerd within-

group sum of squares for the ith group is SST(X) t(ni-1)/(N-1)]

Therefore, for Category IV grouping, the expectation of the total sum

of squared deviations from the group means (the within-group sum of

squares) is

ir=.1 j
j

=1
i

E[SSI4X I E E _

SS_(X)

From the formula for the decomposition of the total sum of squares,

the expectation of the be een-gtoup sum of squares for Category TV

grouping can be written as



and

E[SS_ E[SS_ E['

E[SS I

N-1
E[SST(X)]

-

m-1
_ E[SS (X)]Nl

If the are fixed and given,Xij

E[SSB(X)) = SS (X

E[SST(X)] = SST(X)

substituting from
above)

Also, in Section III.D, we sllowed that if, in addition, is an
-YX

unbiased est mator the efficiency of grouping is given by
-YX

Eff(byx)Bx
SSB _(X)

SS
T
(X)

Hence, by substitution for ,/ (X) , the efficiency of Category IV

grouping when the X. are fixed and given is equal to
ij

bYX

1

N-
SS (-X)
T'

m-1
N-1

At best -- when there are m - (N/2) groups of two observations

each -- the effici.ency of Category IV grouping is only about .5, under

the assumption that the Xi. are fixed and given. However, the effi-

ciency of random grouping provides a standard to which we can compare

the efficiency of grouping in a systematic manner. Only those estimates

with effi Thicy greater than (m-1)/(N-1) offer an improvement over

random grouping.

2.- Category III

_ 1
Category III grouping can produce small values of

/
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because such groupings picsumh1y aign observations to groups in part

on the basis of their X values. Since maximization of the between-

group sum of squares is a criterion for minimizing infor .ation loss

through ,rouping, we expec Category III grouping to yield relatively

efficient estimates.

Prais and Aitchinson 1954) and Crame (1964) have examined the

ficiency of grouping on the independent variable under the assumption

that the X. are fixed and given. While they discussed grouping in a
ij

seemingly general way, their methods and conclusions are applicable to

our Category III variables. Prais and Aitchinson presented a particu-

larly illuminating example. They let X take on the mn equally-

spaCed vaities, :xii- 1, ... . Then adjacent observations were

grouped into m groups of equal size and each value of X
ij

was

takes on the valusreplaced by its group mean X. Therefo

[(2i-1)1 4- 1/2] where i 1,

mn ( -n2-1)
SS

T
(X)

for the ungroupéd observations and

mn

for the grouped values. Whence,

then,

Eff(b .

YX'-YX

12

m2-1)

12

2 2m-n -n2

m2n2-1

n2-1
1 -

2
m-2 n--1

m2

In this special case of Category III grouping with fixed X.. ,

07



[For

1
1 - < Eft

m-

b is a'
YX' YX'

Thus the lower bound of

these conditi _

eater th n (1

eificiency of grouping related to X under

ds only on m , the number of groups formed.

Unfr tunately, the distribution of observations seldom approaches this

specia . The condizfons under which the efficiency of other

Category III variables approach this case ara discussed in Chapter 4.

3. Category II

In Category It grouping, Z aad X are stoc1tcally indepen-
e

dent. Category II variaiams Clare thisn)roperty (8 0) with
Xz

Category IV variables. Since the eff'ciency di grouping is a function

only of the variation a R- and X when the estimators are unbiased,

the efficiency of Category II grouping is the same as for Category IV

grouping. That is, when B) , -e expect Category II groupingX

also to havc efficiency on the order of (m-1)/(11-1) , the retie of the

number of groups t_ the number of observations. It appears that neither

Category II nor Category IV grouping yields estimators that approach the

efficiency of the estimators from Category III.

4. Category I

When Z is a Category I variable, both bi ndariance of

affect the effitientyrif-e-stiMation.---ThUs equaftion [ -121-defines the

efficiency of grouping far this category of variables. In its simplest

the efficiency of Category I grouping is given by

-YX
V(b)

V(r) 02,
YX

121 Eff(byx ix

9 8



and

If we again assume that

[3.32)

are

V(But

12) can be written as

Eff b
YX

02

02/88_00
w T

nd given,

That is, the correlation ratio s an upper bound for the effieie_cy

Category I grouping when the X. are fixed and given.

ouping by a Cate :y IOne implication of the above

85

variable is never more efficient than grouping by a Category III vari-

able with comparable SSB(X) . But since grouping randomly provides a

lower bound for the efficiency of grouping when B-- is an unbiased
YX

estimator L Byx , Category I gro ping can be more efficient than

random grouping when 0 is small.

For example, assume that 50 equal-size groups of 20 are for ed.

Let t3yx.z '5 f3YZ=

2 2 2a - a 2 - o_ - 1 .X Y Z

remembering that

= .2 , and 8
'XZ

.8 . Also, assume that

Then, after solving for w in [3.14a] and

unrelated to X and have

-Y Z5YZ.X

9 9



.55

Also, from formula (4) on page

and

SS_

[ (19

.658

.656

.8) 1 '20

(999)(.658) 657.34

2(.5 )(.2)(.6)

From Table,-3-.4 we got the predicted bias for _u: chosen values

and n(20): 0 -= .083 (02 .007) .

Substituting the above in [3.323, we get

.55Eff(by nu
(.007 )(657 _4 )

6.58)

(.107) (..658)

.070

In comparison, the estimated efficiency from form ng 50 groups of size

20 randomly is

m - 1Eff(byx .75-1) = N - 1

49
999.

049

Thus it i possible t- improve efficiency relative to random grouping

by group ng on a variable which yields small bias hut is strongly rela-

ted to X . By sfmllar reasoning, we conclude that n certain cases,

Category I grouping can yield more cfflcient estimators than Category II
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grouping also.

VI. The Tas.coa!ny_as. J Guide. for Investigation

The main implica.ion from the above discussion is that the inve-s-

tigator should consider the relations of the alternative grouping

variables to the study variables before collecting his data, using such

prior knowledge as is available. This will enable him to collect

information on only th se gro ping variables that yield _estimates hav-

ing the desired properties.

If the investigator demands an unbiased estimate of Syx , then,

under the assumptions of the model, variables from Categories II, III,

and IV can be satisfact-ry. While Category IV variables can always be

created, they are relatively inefficient. Category III variables_can

be highly efficient, yielding large values of S, (X)._ Th0 effi_lency

f Category II grouping i no better than that of Category IV grouping

because observations are assigned to groups essentially randomly with

respect to X Ca egory III variables are clearly the best choice for

data aggregation.

egory I v -riables yield biased estimates though the bias can be

small with large 6
'XZ

and small Category I estimators are

less efficient than Category III estimators but can be more efficient

than those from Category II or Category IV grouping. If small bias is

tolerable and Category III variables are hard to find, Category I

grouping may be advisable.

Most of the discussion has assumed that an investigator has the

ori inal observations and can choose his own grouping procedure. Data

can be available in aggregated form only, however; e.g., when indivi-

dual data have been aggregated for economy of storage or for confiden-
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tiality. The grouping variables that generally appear under these

circumstances are geographic variables such a "state" and "census

t t I, and

88

delimiters such as "school" and "cies- oom" 'These

grouping variables are generally related to X and Y.X and hence

are Category I variables. Regression es i ates deterinind under these

conditions should be interpreted cautiously.
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CHAPTER 4

ADDITI-NAL CONSiDERATIONS IN THE SINGLE-REGRESSOR CASE

Until now, the distussion has concentrated on the effects

linear relations of the grouping characteristic to the main variables

on the precision of estimation from grouped observations. Other pro-

perties of the grouping chara eristic the number and size of the

groups it generates, its distribution, i scale of measurement -- need

to be examined. Here we desc ibe how these thin-variable properties

or factors affect the " ility" of a possible grouping variable.

Under the heading of properties of the distribution of observa-

tions, we consider the coarseness of grouping, the distribution of

obse vations among the groups, and the distribution of the values of

the independent variables both within and among the groups. These

factors can often be manipulated by tle investigator to improve

estimation procedu es.

Then, under the heading of scale of me surement, we discuss several

methods for handling nominall characteristics, such as school cen-

sus tract. Such characteristics are of vital concern in recent educa-

tional investigations (see Averch et al., 1972). We consider in detail

two related approaches to the problem. One approach fsuggested by

Wiley (personal communication )] provides a general scheme for classify-

ing grouping variables on the basis of the scale (int rval or o i al)

and the type of variable (fixed or random). The other approach employs

dummy coding to generate dichotomous variables to represent the grouping

I The discussion also applies to ordinal characteristics which are not
transformed and treated as interval.-

89

103



characteristic. The investigator -r examine properties of the

90

dummy variables affect the proportion of variation accounted for in the

model. This discussion re ies less on formal mathematics than the

preceding chapter. However, our exposition is tied conceptually to

historical developments in the mathematics of scales -f measurement and

distribu ion. For our part, e are attempting to elaborate how the

properties create distortions in empirical investigations of aggregated

data.

I. Dist-ibution-1 Factors

In Chapter 3 we indicated that alternative grouping variables can

be generated from a single grouping chn_ cteristic. Each grouping

variable provid s a unique classification of the individual observations.

Thus, if groups are formed on achieve ent quartiles, the "grouping

variabl " is four-valued. There is one for each quartile; the finer

subdivision by percentiles, or by score points is ignored. How to sub-

divide the scale is often under the inv tigator's control. This is

particularly true of characteristics uhat have quasi-continuous distri-

butions, .g., age" and "test score". There may also be a choice in

subdividing a nominal grouping variable. Thus, race can be subdivided

into "Anglo" and "Non-Anglo" or into "Anglo", "Asian-American"

"A erican Indian", and so on.

In this section we examine the within-variable factors that are

affected by the m nipulation of the class boundaries of a given

grouping characteristic using as an example the variables parental

income (X) and family expenditures on higher education (Y) .

Suppose that educational background is taken a- the basis.for

,tiping. The investigator ean choose the number of groups (classes
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for -ltional background and th location of the class boundaries.

Table 4.1 illustrates several possibilities for subdividing edacational

ba-k ound. Z
(5)

is a five-group classif ation and Z
(10)

and

Z'
(10)

are ten-group breakdowns. With fixed m the number of cases

per youp and the skewness of the di-tribution depends on the bounda

Since the cl ssifications of educational background in Table 4.1

give-different SS
B
(X) , the efficiencies of the grouped estimators they

gene- _e also differ. We explore these factors systematically below.

A. Coarseness of Grouping

In Chapter 3 we found that the coarseness of grouping- by which we

mean the number of groups formed ( ) for a fixed number of observa-

tions (N) , has important effects on both bias and efficiency of

grouping. According to equation [i J1], bias is inversely i lated to

m . In addition, the efficiency of g-roui ng increases with the number

of classes. This finding has been supported through analyses of

empirical and hypothetical data by several investigators (Blalock, 1964;

Cr,m 1964; Prais and Aitchinson, 1954).

The effect of m on efficiency has al-- dy been discussed in

connection with random grouping. The present discussion extends the

"coarseness" principle to the more general case where the grouping

variableisnonrandormpleeitherZuwor Z'
(10)

yields a more efficient estimate .then
(5)

ith non-zero
XZ

the

groups of Z
(10)

tend to be more homogeneous n those of Z
(5)

In other words, the within-group variation of income and educational

backgrou d is srnaj.ler with the ten-group classification of educational

background than with the five-group classification. This means that the

corresponding V-- en-group variation is larger with the total variation
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Tab1 2 .1. Altecnative
characterisr

GIses

Describing

Father's

Educe on

ping variables based on the same grouping

92

Grouping Variables

0-6 Yea-

7-10 Years

11-HS Diploma

1-3 Yrs.
Beyond HS

More than 3
Beyond HS

ne 0-6 Years

1-2 Ye 7-10 Years

3-4 Years 11-HS Diploma

-6 Years 1-2 Yrs. Beyond HS

7-8 Years 3-4 Yrs. Beyond HS

9-10 Years Bachelor _ Degree

11-12 Years Work Beyond Bache10-

13-14 Years Master's Degree

15-16 Years Work Beyond Masters

More than Degree Beyond Masters
16 Years (PhD, MD, LLD, etc.
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held constant . So the orrelation ratio of either

Z'
(10)

greater than that of 7. and the estimat i! more efficient.

Cramer's paper (1964, p. 241) provides a particularly illuminating

analysis of this t plc. lie considers the case where the individual

observations ara ordered according to their X values and the sample

range is divided into m equal int rvals. The total sum of squares is

partitioned into between-groups and within-groups sums of squares, and

the components are divided by the total. After rearranging terms,

Cramer arrives at the efficiency equation:

(10)

93

[4.1]

SS13 _(X) SS (X)
1

$S
T
(X) SS

T
(X)

where SS
ti
(X) is the pooled within-group sum of squares of the X.

ij

Cramer then estimates. SS _(X) and SSW(X) . For the sample of

original observa ions,

.SS (

where a2 is the population variance.
-X

For his grouping method, the width of al class intervals is

uniform and equals

[

rang
m

#

where the sample range of X is expressed in terms of the population

standard error. Cramer then states that if the sample X,. are

uniformly distributed within each class, the hin-group variance,

ch cla s is

WV

So the pooled within-class variation is approximated by

[4.2]
[rarme

12 ni
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By substituting into [4.1], we obtain the approximation

SS (X)
[4.3] LLI.LES10]2

SS (X)
12m2

Cramer points out that his approximation is jus-ified for large N

and relatively small in because it depends on the replacement of random

variables by their expected values. He also emphasizes that his esti-

mate of the within-groups variation of X is an overe _i:ate when the

actual distribution of X within class is a strip from the normal

distribution, and not a rectangle.

One can use values from the sampling distribution of range (X

to provide efficiency estimates of various combinations of in and N

From Cramer, the expected valves of range (X) with the sample sizes

100, 200, 500, and 1,000 are 5;015, 5.492, 6.073, and 6 483, respec-

tively. ,Table 4.2 includes the efficiency of grouping N observations

into m equal-interval groups. The values are in agreement with a

similar table by Cramer (1964, p. 244).

Efficiency appears to be very high except with very small in

Most investigato-s would happily use group means when the efficiency of

A- regression estimate from grouped daca is high to reduce cost of

data processing.

Cramer describes a fairly representative method of grouping in

economic studies. Unfortunately, his findings do not apply to

Category III grouping variables with unequal intervals nor do they ap-

ply to variables in other categories. Equal-interval grouping may not

be appropriate in many educational investigat ons. Thus we cannot

expect estimates as efficient as those depIctrd in Table 4.2.
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Table 4.2. Efficiency of alternative ways of grouping on the same
characteristic as a function of sample size and number
of groups.

95

--
Sample
Size
N

-i

E[range(X)]*
m=2

Efficiency- (SS(R.)/SS (X))

Number of Groups

m=4 m=5 m=10 m=20
_

ril25

100 5.015- 0.476 0869 0.916 0.979 0.995 0.997

200 5.492 0.372 0.843 0.899 0.974 0.994 0.996

500 f6073 0.232 0.808 0.877 0.969 0.992 0.995

1000 6.483 0.123 0.781 0.860 0.965 0.991 0.994

*See page 93.
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B. Distribution of Observations Among the Groups

The distribution of observations among the gronps is of concern

only when there are some groups with very few observations and when the

independent variable is imperfectly measured. In the former case, some

group means are unst-Ible, and their instability reduces the precision

of the grouped esti ate.

A large nUMber of observations -er group are needed to cancel out

the effects of random errors of measuremen_ on the independent va.,iable

(Blalock, Carter, and Wellsi 1971). In the example above, this can

mean that Z
(5)

is better for. grouping than. Z
-(10)

, depending on the

within-group distribution of the income values and on the size of the

errors.

It is net always easy to determine whether there are enough obser-

vations per group for adequate stability. Generally, grouping variables

with large skewness coefficients yield imprecise estimates. However,

with other variables, groups with few observations are scattered along

the Z scale. With these variables, the investigator must rely on his

understanding of the nature of the grouping characteristic-and its

relatiOn to other study variables to avoid imprecise estimates.

C. Distribution of the Independent Variable Within and Among
Groups

Though in 10 for both Z
(10)

and Z'
(10

in Table 4.1, the

two classifica ions yield equally efficient estimators only when

v(l7(10)1)= v(lz,
(10)

) . The subdivisions of these two classifica-

tions are not likely to result in equal between-group -variances and the

-Pooledwithin-grouRvariationinXforZuoarld Z' - are
(10)

undoubtedly different. Thus the within-group distributions of X and

the overlap of these distributions are affected by die placement of the
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class boundaries, and, in turn, affect the efficiencies of grouping.
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Even without a joint distribution of income and educational

background, it is possible to envision the properties of this distribu-

tionafterciassificaorbe mean incomes and inco

ranges are app o imately the same for the "none" thr gh " -8 years"

groups. Hence, the income distributions of the groups from Z
(10)

overlap a great deal. Individually, some of the groups cont ibuted

little to.the be een-groups variance. In fact, collapsing the five

lowest groups into a single "0-8 years" group does not greatly change

the between-groups v -iance. So Z
(10)

acts rather like, say, a Z(6 .

on the other hand has wide intervalS at th7 lower end, a

rela ively uniform distribution of observations, and large varia ion in

group means. It forms homogeneOus income groups by adding groups at the

upper end and collapsing si 1 (in income) groups at the lowel end.

We suspect avn :Z'(lo) forms income groups which are more compact

(smaller within-group variation) And more distinet_(less merlap among

groups) than those from Z
(10)

to ensure that the between-group variance in income will be greater with

If so, this combination is sufficient

(10)
, and its grouped estimator more efficient.

In general, classifications wh- h yield small within-group varia-

tion in the independent variable are preferred. This type of classifi-

cation decreases the pooled within-group variation and thus increases

between-group variation.

The effects of overlap of the within-group distributions of the

independent variable operat, similarly. As the overlap a ong distribu-

tions decreases, grouping more closely resembles direc_ stratification

on X , which is optimally efficient.
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D. Summary

The within-variable factors that affect estimation are int-

dependent and,t -d to constrain each other. Insofar as finer breakdowns

increase the relation between the grouping variable and the independent

variable, informa_ on loss declines.and precision increases. _If the

characteristic,is judiciously chosen, The investigator can quickly

arrive at a grouping which balances the competing factors and yields

estImates which suit his purposes.

II cales of easurement liTorrikILLSILIpiLig_Oharacteriatics

So far, we have treated the grouping characteristic as if it has

at least an interval scale and thus has specifiable linear relations

with the d pendent and independent variables. The next step is to

consider grouping characteristics that have nominal scales.-

Sound procedures for predicting the effects of a nominal grouping

a

characteristic are urgently needed in_educational research. Cross-

level inferences from ggregate sampling units such as schools occur

frequently; careful examination of the consequences is needed. Unfor-

tunately, the sociological methods developed to date are often complex,

and some apply primarily to relations among unordered variables

(Goodman, 1959; Ivers , 1973).

Our approach is to try to fit structural-equation methods to this

case. We shall incorporate the nominal grouping characteristics into

the model as we incorporated ordered characteristIcs. Two schemes for

incorporating the nominal grouping characteristic are discussed below.

Wiley (personal communication) actually offers a new conceptual scheme

for analyzing the grouping grocesS. The other approach, the creation

multiple dichotomies to-represent the nominal characteristic, adapts a
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familiar econometrIc technique.

A. Categorization by Scale and Type of Variable

To this point we have considered only the manifest relations of

grouping variables tp the other study vari bles. We have not att mpted

to describe the latent forces that underly the grouping of observations.

When the manifest grouping chardete-_ stic has a nominal scale, a more

careful ex- inatiop of the classification proc ss may preve useful.

Classification procedures such as latent structure analysis have been

discussed in this context. We consider here the implications of a

procedure suggested by Wiley for aggregation problems'.

1. The Classification Matrix

Wiley's scheme for claL'sifying grouping v riables ts a variation

of the model represeated by the structural equations (3.14a) and [3:10]

and by the path diagrams in Figure 3.1. Additionally, however, (1) each

is now' said to be either "fixed" or a "random" variable, and (2) at-

tention is now paid to whether it has either a nominal or interval scale.

Before, a grouping variable was spoken of as.random if the indivi-

dual observations were randomly allotted to groups. Here, Z is

considered a random variable if the groups of Z are randomly sampled

from some broader population. Z thus operates like a random factor

in the analysis of variance:as opposed to a fixed factor. Randomness

is a property of the selection of groUps, not of the assignment of

observations to the groups.

To clarify Wiley's scheme, consider the following hypothetical

data set. Suppose that data on the following grouping variables were

collected in an interne ional- study of the relation of home environment

to mathematics achievement: the sex of students- the nation- he

clas--oom, the school, the school size, student mathematical aptitude,
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and the salary of th- students math teacher.

We can classi_ each variable

100

hin a scale c type-of-N/1 iable

grid. The nominal vs. interval dichotomy is relatively -straightforward.

In their present form, school size, math aptitude, and teacher salary

are the variables :itb interval scales.

Classification by types of variable requires more thought.

likely that the classrooms in the study are important only as- .p e

sentat en.of similar entities. Therefore, we can treat the classrooms

as random samples from some larger population of classrooms

Examining each grouping variable in the same manner leads to

classification matrix A:

NOMINAL

INTERVAL

Matrix A

FIXED RANDOM

Sex Classroom
Nation
School

School Size
leath Aptitude
Teacher Salary

2. .Manifest vs. Latent Grouping

Wiley argues that, In general, grouping characteri tics like school

and classroom are surrogates f some unmeasured variables which_have

interval scales. (Without loss generality, we assume there is only

one unmeasured variable.) In other words, there ex sts some underlying

interval variable Z which determines group membership when observa-

tions are manifestly grouped hy a nominal variable Z In our present

example, this might mean that nation is really . a proxy for, say, nation-

al comm ent to education. then grouping by nation would approximate

grouping by national com it ent to education (as measured on an interval

114scale).
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We can illust ate the interrelation of Z and Z by incorpora-

ting both in the path diagram. This model is presented in Figure 4.1.

When the data are grouped by Z
+

, Figure 4.2 represents the aggregate

path diagram corresponding to Figure 4.1.

Given these path models, the investi ation p operly focuses on the

cond tions under which y y y
1 2 3

answ red is "Does grouping by Z affect Z in a way that will change

The question to be

the relation of X to Y 7" If the answer is yes, then,grouping by

nationality yields biased eatimates.

Z cannot be directly measured. It is a latent variable analogous

to the latent traits of factor analytic models. However, values of Z

can be estimated by D(Z
+

) a discriminant function describing the

+differences in the classes of Z with respect to variables potentially

influencing the grouping process.

In the example above, national commitment to education

latent variable represented by na ion. Subs antial auxiliary informa-

tion, such as per pupil expenditures (W1) , educational expenditure as

a proportion of national GNP (W2) , and proportion of children enrolled

in school at, say, age 15 ( is needed to have a prayer that D(Z
+

)

generates good estimates of Z values. The equation representini

this relation would be

National Commitment to Education ..-. D(Nation) + 6

' (2142 +6

where the q)is are the variab weights in the discriminant function

and 6 represents unaccountable differences in national commitment.

6 must approach zero if the grouped estimate is to be unbiased.
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Z -- manifest (or measured) groUping variable

latent unmeasured) grouping variabl

- - dependent variable
-

X -- independent variable

v, w wsturbance terms for X and Y

- - structural parameter for relation

designated by corresponding arrows

T disturbance term

Figure 4.1. Path diagram incorporating both latent and manifest
grouping variables.
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3-- Aggregate independent variable

(group means based on Z+)

Aggregate dependent variable

(group meene based on )

m
-- Aggregate latent grouping

variable

v, w Structural parameters for

aggregate X and_

structural parameters for

aggregate relations designated

by corresponding arrows

Figure 4.2. Path diagram for aggregate data grouped by Z
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This is a minimum condition for maintaining consistent relations among

Y , and Z at the individual and group levels. Otherwise, the

influence of , which has an effect on X and Y independent of

ill change between levels.

Returning to hypothetical data, we can conceivably estimate the

-f the particular classrooms, schools, and nations. in fact, all

the nominal variables can be handled in this way. If so then the new

classification matrix would be

NOMINAL

INTERVAL

Matrix B

FIXED RANDOM

School Size
Math Aptitude
Teacher Salary
D(Sex)

D(Classroom
D(School)
D(Nation)

3. Evaluation or the Wiley Classification Scheme

According to Wiley's seheme, we can always generate an interval

grouping variable if enough information is available. The investigator

cannot translate his knowledge of the underlying grouping variable into

, an ordered function without resorting to classification procedures of

this sort.

At the same time, however, the search for an underlying grouping

variable greatly complicates the procedure for choosing Z . Where

before only estimates of $ , 6 , and V_ wer needed, we
YX-Z XZ

cc

must now find the underlying Z Besides, we still have to determine

optimal class intervals (with respect to within-variable factors) for

+
DM) after the variable has been generated.

The benefits from estimating D(Z
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are derived mainly from the
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uncovering of the inherent causal pa terns among the grouping variables

which affect the esti ation of 5 . If the investigator's efforts
YX

are directed toward "purity" in aggregation and more adcurate specifi-

cation of the model, Wiley'5 methods can be useful. It makes little

sense, on the other hand, to estimate Z solely for the_ purpose of

having an interval grouping variable.

The type-of-variable distinction raises serious questions about

the process of grouping. If the classes of the greuping variable are

fixed, then there is no change in the conceptualization of grouping

effects. If, on the,other hand, the classes are random, ithe original

observations should be treated as a single or tw&-stage cluster sample

rather than as a simple random sample for the purposes of grouping.

In cluster sampling, the selected clusters (individual classrooms, for

example) are a simple random sample from =Ite population of clusters and

sampling within the clusters is also random.
.

The distinction between cluster a d simple random sampling

apparently has not been made before in the context of grouping The

,

usual regression'analyses start with the assumption that the data are -

a simple random sample. We do not find fault with this assu ption for

the ungrouped observations or for a fixed number of groups. The

sampling properties of the data become an.issue only -ter grouping.

The question then arises as to whether the classes o'; Z can be con-

sidered a simple random sample since the classes beeume, the units- for

analysis. An unbiased estimate is impossible if the grc;.aps themselves

are a non-random sample, whether the units are the original observa-

tions or the weighted group means.

B. Dummy Coding

. Economists generally employ dummy coding methods to incorporate
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nominal characterist cs in their models. This pro'edure is less

complex than Wiley's and may prove fruitful for our purposes.

In applying dummy coding,.we represent any nominal characteristic

with m groups by m-1 (or ending on the comPuter progra

dichotnous dummy variables in the basic , -al equations.

Equations [3.14a] and (3.14b1, which incorporate the grouping

characte:istic become

[4.3a] Y = a X e
aYX-Z ,Z

m-1
YZ1 X,Z2,

z

[4.3b] X A

.z
m-1 1,

wiulre ate
p i = 1, .. m-1 ; are the dichotomous variables repre-

senting group membership, and the 5
-YZ -X Z z_ Z_ ._-...Z

the a
.. are the structural parameters in

m-

the regressions with Y and X , respectively.

Then, if

and

is the square:: rorrelation coefficient of X and

Y and and are the squa=ed multiple
1 "Zm-1 Zm-1

cor elation coefficients frnm incorp rating the dichotomous regressors

based on Z , then the direct strength of the relation of Y to Z can

be esti a ed from the square root of the variation accounted for by

om
-Y X
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The rela ion of X to Z
(13XZ)

can be estimated from

J. m-1

107

This estimation procedure requires some justification. The reason

for the use of the square root of the variation account-d for is to

have units comparable to the standardized regression coefficients from

incorporating interval grouping variables. The "additional variation

accounted f notion embodied in our suggested estimator B _
-YZ.X

is an

attemp_ to identify any relationship between Y and, Z's that is masked

in the simple linear model for ungrouped observations (Equation (3.11).

The estimator suggested for a provides an IndIcation of the magnitude

of the relation between X and Z's (n
x would also fulfill this func-

tion). in this way, we hope to make direct compari -ns of the effects

of nominal grouping characteristics with the effects _f interval charac-

teristics. For this reason alone, the dummy coding strategy provides a

viable alternative to the classification procedures which necessitate a,

search for the latent causes of group membership.2

C. Summary

Neither Wiley's scheme nor the dummy_coding approach yields perfect

indices of the relations of a nominal Z to X and Y , but both warrant

further consideration as alternatives to those previously proposed. They

at least provide a starting point for refining the "structural equations"

approach in the nominal case.

2Werts and Linn (1971) discuSs the regresi;ion analysis for "compositior.al
effects", which involves the incorporation of Ki. , rather than Z in
the simple model. Using R.. instead of. Z in-the modified structure
has the advantage of ensuriAg that the grouping mechanism is represented
by an ordered variable, regardless of the scale of tne grouping charac-
teristic. However, with multiple regressors, this strategy can become
cumbersome rapidly unless one .incorporates, say, the values from the
best-linear-discriminant-function (discriminating among the Z values
onthe-7basis-of. c,-function of_the Still, the Werts-Linn methoA
deserves more consideration than we -have giVem ft here.
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CHAPTER 5

PRFLININARY NOTES ON THE MULTIVARIATE CASE

Our findin

be extended to the multivariate ease. Problems cause&by Correlated

regressors, however, can coMplicate the-interpretation of, grouping

the effects of_grouping the bivariate case can'

-fects. These problems are considered below

. We begin by revie ing.previous work on the multivariate -a

considering papers by Praia and-AitchinSon (1954),-HaitovSkYj1966;

1973), and Feige and Watts (1972); To simplify our own developments,
_

we analyze the.three-variable case where Y is regressed on just two

independent variables X and 14 . The.grouping variable--

as a fourth variable. The parameters to be estimated are the

enters -

regression coefficients 13 and 8m.x The -bnclusions

generaizable-to any-number-Of regressors.

The earlier taxonomy is expanded to consider

W , and Z for a apecific causal ordering

the interrelation of

and

imating theThis taxonomy is u ed to investigate,the bias in es

regression coefficients.

I. Previous Work on the Mu1tvariata Case

Whereas univariate prediction Withgrouped datajlas.been-considered

by persons from several Social science disciplines,.the treatment of

grouPing effects with multiple predictors has remained- ptirely in:the

domain of the econometricians. Praia and Aitchinson (1954) seemingly

stood alone until Haitovsky (1966) suggested thist grouping can indeed

cause bias in the multivariate case. Feige and Watts (1972) --.
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apparently unfamiliar with Haitovskys work -- raised much the same

question. Below we attempt NI reconcile the conclusions of Frais-

Aitchinson, Haitovsky, and Feigu-Watts.

A. Transformation by a Grouping Matrix Prais and Aitchinson

Preis and Aitchinson (1954) derived formulas for grouped

estimation in the multivar" te case. They employed matrix notation

throughout.

Consider the usual pos ulated model for multiple linear regression:

[5.1] Y = X@ u

where Y , X , , and u are matrices of orders N x 1, N x k,

k x 1, and N x 1, respectively. We assv that the rank of X is k

the number of regressors, where k is less than or equal to the number

persons N

An estimate of can be found by the principle of least-squares

_(LS) . The assumptions in the multivariate case are analogous to those-

of the model (equation 3.1). They are as follows:

Bl. The X are fixed or else the X a e random variables with

joint dist -ibution independent of

B2. E(_) = 0 .

'B3. V(u) = E(nu' ) , where is 0 ku natrlx of

order' 'N

B4. X is of rank

The principle of least-squares provides an estimator of that

minimizes the sum of squares of deviations of and

estimator is given by

[5.2] b = -v-

a_ unbiased estimator of @ If the u are normally distributed,

This

12 3



then h is also a maximum likelihood estimat

The covariance matrix of the vector b is

[5.3] cov(b) = G2(x'xu
and the residuals e = Xb are linear functions of the disturbances

110

Prais and Airehinson next introduced an in by N grouping

matrix G which maps the original observations into their appropriate

groups and weights each group by the number of observations included.

Thus G is a weighting matrix in which the weights are determined by

the number of observations in the va-ious groups. The value in the ith

row -f G is 1/m. for persons belonging to group i and 0 for

persons not in group i . For example, with five observations divided

into two groups (m 2) with the first, third, and fourth in the

firSt group and the second and fifth in the other; the weighting matrix

Note that

and

(GC

G

[1./3

0

0 1/3 1/3

1/2.
1

1/2 0 0
1

GC' =
'1/3

0 1 2

2

That is, the diagonal elements of the inverse of GG' indicate the

number of observations per group.

The regressIon model for the grouped data then found by premulti-

plying [5.1] by G to get

GY = cu
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Since G is a weighting matrix,

GX = X and Gu = u . So we obtain

gives us means, i.e

[5.4] Y = xa u

By assuming that the number of groups formed,

or equal to the number of parameters estimated,

is of rank k . Consequently, the assumptions Bi-B4 apply to the

model [5.4] where

greater than

follows that -GX

and

where

= 0

V u2GG'
u--

Under these conditions, the grouped estimator B for B is

[5.5]

For X fixed (o

that E(Y) =

1-
-Y

random, because -f assumption Bl and the

= (X'HX

-

The covariance -a trix of B is given by

[5.6] cov(B ) u2[R'(GG'
u
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Preis and jtc1ijnson concluded that "whatever the method of

grouping, the resulting estimators will always be unbiased" (1954, p. 1).

But this contradicts the results of Chapter 3 for grouping in the single

regressor case. The work by Haitovsky (1966; 1973) and by Feige and

Watt (1972) an_ the new materidl in Sections 11 and III of this chapter

identify limitations of thdit fo mulation which led them into difficulty.

Prais and Aicehinson also provided an overall measure of the effi-

ciency of the method of grouping:

[5.7} Ef b,B
X'HX)-1

tr(X'X)-

the ratio of the sum of the diagonal elements from the covariance matrix

of b to the corresponding sum from the covariance matrix of B . In

the single-regressor case with X fixed- their efficiency formula

simplifies to become the ratio of the between-grouP sum of squares to

the total sum of squares, the equivalent of Cramer's formula (see page

47). When there is no bias from grouping, this measure of efficiency is

appropriate.

B. Estimates from Classification Data -- Haitoysky

Haitovsky (1966; 1973) called into question the conclusion of Preis

and Aitchinson. He demonstrated problems that arise when the regressor

data are in the form of oneway c1assification tables, with frequencies

of the cross-classifications unknown. According to Haitovsky, grouping

on one independent variable can lead to biased esti etes of the multi-

ple regr -sion coefficients in this situation.

Hai ovsky analyzed data from a study by Houthekker and Haldi d)

to illustrate his conclusions. In the Houthakker-laldi study, aut o-

bile purchases (Y) were regressed on individual income (X). and
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initial automobile inventory vsky grouped observations on

X and W separately as well as on the cross-classification of X

and W . His esti ates fur V _ and a _ are presented inYX-W YW.X

Table 5.1.

The esti ates from the cross-classification were fairly accurate.

T e single-variable classifications yielded estimates with hugh standard

errors. If 7 or 8 groups had been formed randomly, we would have

expected the standard errors to be even larger.

Haitavsky failed to note an interesting trend in the data. When

the observations ware grouped by one regrdssor, say, its regression

coefficient 0 was better e,timated, in terms of smaller bias andYX.W

standard errors, than was the coefficient a of the other regressor.

That is, grouping on a regressor effected the estimate_ of its coeffi

cient less than

variables.

As Hannan (1972) put it, Haitovsky's paper showed that "in the

did the estimate of the coefficients for othni

multivariate model, grouping by some concrete criterion which

approximates grouping systematically by a subset of the regresso s

can produce appreciable bias." (p. 3 ). Hannan also pointed out that

the bias Haitovsky described is es entially specification bias. That

is, bias arises through the failure to include all correlated regressor

variables in the data analysis.

According to Haitovsky and Hannan, unbiased estimates are obtain-

able if the investigator groups on all regressor variables jointly.

But with a large number of independe t variables each having several

classifications, grouping on all jointly is ,impractical. Unless other

127



Tabic 5.1. Estimates of regression coefficients and
with a1tcrntive grouping methods from th
studya.

114

dard errors
-uthakker-Haldi

Number of Groups
Grouping Me hod (m) -YX.W 7.x

Ungrouped data. 1218 .758 -.178
(.1398) (.0367)

Income(X)-x- 56 .747 -.162
Inventory (W) (.1203) (.0323)

Income (X) only 7 .551 .038
(1.6139) (1.9752)

Inventory (W ) only -.653 -.093
(2.5391) (.1572)

&-
The numbers in parentheses are the estimated standard errors of the
corresponding estimates.
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evidence is forthcoming, it is easy to o :ce with ilannan's conclusion

that the analy, _ must have a good deal of confidence in the subs antive

aspects of his model before concluding that any grouping procedure_i-

"optima.

C. Aggregating Data to Preserve Confidentiality -- Feige and Watts

Feige and Watts (1970; 1972) considered the feasibility of data

aggregation as a means of preserving the confidentiality of data. They

developed s=atistics for evaluating the loss of information from

grouping in this context. One measure indicates the degree-of diver-

gence between estimates from grouped and ungrouped data, and the4other

indicates the loss of efficiency. Feige and Watts applied a variety of

grouping procedures to a large data set and assessed the resulting

parameter estimates.

According to Feige and Watts, differences between the ungrouped

and grouped estimators may be composed of (i) specification bias, ( i)

bias introduced by a grouping that is not independent of the disturbances,

or (iii) sampling error induced by the loss of information in grouping.

Their second source is most pertinent to our discussion since it sug-

gests that even when the regressors and disturbances are independent at

the individual level, bias can Still result when the grouping matrix

s not independent of the stochastic disturbance (see p. 51-52).

When their description of bias from grouping is translated into

more familiar terminology, we find that Feige and Watts actually

described the case previously discussed by Blalock (1964) and Hannan

(1970; 1971) where the regressand is the basis for group classifica-

tion. In this case, since Y is a 1inear function of u , grouping
-

on Y ensures that H and u are not independent when Y is the

grouping characteristic and thus the estimate from the Y-on-X
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regr ssion is biased (see pp.51-52_ for a summary of Blalock's

reasoning).

The problem of gauging the magnitude of the divergence remains if

the analyst is to systematically choose among alternative grouping

methods. The Feige-Watts measure -f divergence is based on the differ-

ence between b and B We summarize the Feige-Watts analysis below,

following _he Prais-Aitchinson notation and transformation procedures

for generating the model at the group level. Relevant equations from

our discussion of Prais and Aitchinson are repeated for clarity.

Equation [5.1] with its accompanying assumptions is again the

basic model for the ungrouped observations. We have:

and

[5.2] = OVX X'Y

15.3] cov(0)- 7

A grouping matrix G transforms the raw data to a set -- m rows;

the ith row con;;ains the mean values of the variables for the ith group,

I.e., the mat-ix [Y,X] is replaced by

Recall that

CioR (GY,GX)

H = G'(G

Hence, tho estimates of and lts covariance matrix from grouped data

can be wri7ten as

and

[5.5] B =

[5.6] cov(B)

The divergence between grouped and ungrouped estimates of
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has a zero mean and variance-covariance matrix equal to

Let e y

cov[A(H)] e2[(XIHX)
u

so that

XIX

is the sum of squared residuals

from the between-groups regression. A sume additionally.that .the

disturbances u are normally distributed. Then, according to -Feige

and Watts,'the quadratic forms

A(E)[(XIIJX)-1 - XIX A(11

and

Q2 a?

a2

117

are distrIbuted as x2 with k and m-k degrees of freedom, respec-

tively.

Feige and Watts claim that

and H and u are independent,

[5.8] r

odel is correctly specified

is distributed as P with k and m-k degrees of freedom. Values

of r beyond the critical values of the .P-distribution indicate dif-

ferences between estimators that cannot be attributed to sampling

error. They.assuciate good grouping methods -ith Enall r values.

The Feige-WattL; efficiency criterion is similar to the one that

Prais and Aitchinson derived. (See.Equation 15.7].) Feige and Watts

remove the influence of the constant term, as no information is lost

in estimating this parameter. Their efficiency measure is
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1 1

[5.9] ftr[(X X'HX]

v ere tr[(X'X )-1 IVHX] is the sum of the diagonal elements of the'-
matrix whose entries are the ratios of between-group sums of squares

and cross-products to total sums of squares and cross-products. Thus

Feige and Watts also recommended forming groups homogeneous with

respect to the independent variables in the analysis to:minimize loss

of efficiency.

To illustrate their findings, Feige and Watts examined twenty

regression equations generated from income end dividend invermation
----------

provided by. 5,393 banks to the Federal Reserve System. The seven

grouping rules they used included a random procedure and geographic -

and financial asset indices. There were also three levels of aggnega-

tion -- slight (3 observations per group), moderate (30 observations)

and drastic (100 observations).- Thus twenty7one grouping Methods were

possible for each equation..although theerticle only discussed a few.

Certain of the Feige-Watts equations were quite sensitive to the

chnice of grouping rule and level of aggregation. The reported- r

values ranged from .02 to 84 96. For one equ tion, all the F values

were significant at-the .05 level, while grouping produced no signifi-

cant results for other equations. The efficiency indices ranged from

.038 to .689 -ith systematic grouping serving much better thartrandom

grouping. In every case, slight aggregation was superior to moderate

-or drastic aggregation in terms of bias and efficiency. Thus a large'

number of groups again proved to be desirable.

.Otherwise, the Feige-Watts examples demonstrate the tradeof

between efficiency and bias. Random grouping is inefficient but un-

biased. Systematic grouping raises the likelihood of misspecification
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and grouping bias, but improves afficiency.

It is worth noting that the test that Feige and Wat propose

devergence (Equation 5.8) may not be the most appropriate in this

instance. It may well be that the numerater_and the denominator are

no_ ind pendent.of_ -ach-other-- Furthermore there is an inherent asym-

metry in that the denominator_ is based solely on the aggregate residuals

whereas the numerator is a function of both ungrouped and aggregated

information.

The traditional F-test for differences in regress on models takes

the form:

where

and

(4.-11_1)/(dfF
F

(1-14)/(N-dfF)

= squared multiple correlation for the o-called "full"

model (the more inclusive model)

= squared multiple correlation for the "restricted" model

d fF, = degrees of ireedom for the full and restricted

models, respectively

There is no recognizable standard for interpreting the comparison of

individual-level and aggregate regression models in th_s -fashion.

Intuitively, however, it is appealing to associate the individual-level

model.with the "full" model above and the aggregate with the "restricted".

If this interpretation is defensible, then the residual sum of

squares from the individual-level regression (e'e , where e = Y -

would seem to b__ more appropriate than Feige and Watts' choice for the

deno -nator. This is a problem wo th explor ng further, but it is

outside the domain of the present inquiry.
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The o- "

The Unitovsky and Fel e-

o-Predictor

120

_ conclusions require elaboration since

neither presented a way to detect which subset of estimators is biased

by grouping. Our analysis of the multiple- egressor case departs from

the previous work. First, we specify the order of all variables; the

grouping variable is treated as prior to other variables to which it

relates. Secondly, each regression coefficient is considered separate-

ly. This method, though more cumbersome than a matrix approach, enables

us to determine whether the re3ations of the grouping variable to the

regressors and regressand provide clues as to which subset of estimates

will exhibit bias. If this strategy works, we will be able to state

general prinf-iples for determining which estimates are biased for any

number of re?ressors.

We follow a proce6,.e that used in Section IV of

Chapter 3 with tlo , r!a e ca e. A multiple-regression model with

two regressors and W) is modified by incorporation Z and by

spcifying the structure among Y , X , W , and Z . This four-

variable structural model is then represented by simultaneous equations

describing the relations of co X , W , and Z , of X to W and

Z and of W to

Formulas for 0 and 1' are presented in terms of theYX-W

pa ameters of the structural eq..: tions at both individual and group

levels. The formulas are appropriate for the case when the sample

equals the population and under certain conditions for other sampling

designs. Any diffe--nce between coefficients from grouped and un-

grouped data is once -Ire attributed to the effects of grouping.
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where

and

A. The Reg e-sion Equation with Two Regressors

The equation relating Y to X and

15.101 Y =

[5.11a

[5.11b) a

13YX.1-4

rel-x

13YX.1. ElYW.X14

2

GYXGW °YWGXW

0
X W (aXW)2
-2 2

2
Cr CT

YW X YX XW

a2 a 2 (
X-W

Assumptions B1-134 still apply so that ndependent of ,

121

and W . The object of the investigation is to estimate i3yx. and

a from equation [5.10] using grouped data.
YW.

B. Modified St ucture with Z Incorporated

The n xt step is to constrain the model by specifying a structure

among Y and Z . As before see page 53), we treat Z as

prior to

Y.

and W We also assume that W is prior to X and

The path diagram of the structure is

In th. diagram, c is the disturbance te
-Y

presenting all determiners

-of Y not linearly related to X , W , and Z represents all-
-X

.determiners of X not linearly related to W and Z ; and c represents all



determInc--- -f W not linearly related to Z

a 6 and are path reg escion coeffi ients.YZ-XW XW-Z XZ-W -WZ

The structu e generates these simultaneous equations:

[5.12a] Y-a + R w+ z+ c
Y YX-W2 YW-XZ YZ-XW- Y

[5.12b] X = ax + W +
X 14

Z + E
Z X I

[5.12c]

Once again; B
-YX-WZ ' 5W-XZ

regr _sion parameters; ay , ax , and

YZ.XW -2 13XZ.W
an_ Bwz are

are intercepts; and ey
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ex , and cw are disturbance terms. c
Y

is assumed independent of X ,

, cx , and cw cx is assumed independeat of W and ew .

is assumed independent of Z . We also assume that the disturbar

terms are homoscedastic and independent as in the single-regressor

case.

Besides the intercepts, there are ten parameters: q
c

a
c_

-2

-W -X
a 2 and the six regression coeffients. Rewriting equations

-Y

[5.12a, b, c] in terms of these parameters, we have-

[5.13a] Y = ay R [a +
YX-WZ X

[5._ b) X = ax +

[5.1

z 4- E-) -V el
W- Xz'W -X

Z + c
W
) + 0_ Z + c_

YZ XW- Y

_ z c_) + a z c__
WZ w xz x

W a +0 Z4-
W W2

Reduced-form expressions for variances and covariance are

[5 14a] 02 20 4- 2B
XI Z 142 Xz14 X2 X -2 W2

02
XW-Z-c

w
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[5.14b) a =

[5.14c]

[5.14d

[5.14e]

er
Z

0 02 2
YX*WZ XW*Z YX-OZ XZ

+ 20 5
-YX*WZ- XZ*1.1

+ 0
YW*XZ XZ*W WZ -YZ._ XZ*W

YX*WZ X

2

w
+ yw,xz z-wz

Z

The redueed-form equations and variance-coy ance expressions can

be used to derive equations sta ing 0 and 5 in terms of theYX-W 1W-X

known pare eters. By substitution and rearrangement, we arrive at the

desired equations:

and

[5.15a] =YX-W YX-WZ 8izxw8xz.w

[5..15b] 0
YIPX

c
W

-2 4, (82_02 )02ew WZ Z
X
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C. Equations Based on Grouped Observations

1/1

The eqUWEions in Sections II.A and 11.13 are applicable to the

population of ungrouped observations. There is a parallel set of equa-

tions for the population of grouped observations.

The initlal model for the regression of 7 on R and W can be

written

[5.16] 1 = a + 13N.R171 uy

[5.16],'eaeh term is the grouped counterpart of a term for equa on

[5.10]. 0-- - and a-- - are the regression coe ficients for theYX.W YW.X

grouped observations. Under certain conditions to be discussed below,

8 a-- - and
YX-W YX-W YW-X YW.X

The simultaneous equations pertinent to grouped data are given by

and

[5.17a] Y = a + R
Y X'WZ 13Y11.X YZXW Y

[5.17b] X = a + a _177x z

[5.17 ] = 5 2
wz-

0 2 E
xz.w -x

The regression coefficients are given by

[5.18a]

[5.18b]

4- 5
YX-Wz YZ-X67 Xz-

2

YW-XZ YZ-X14a-Z

Thus the only difference between equa_ ons of the grouped and umgrouped

regression coefficients ([5.18a, b] compared with [5.15a, b]) is the

replacement of population variances by between-group variances.
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D. Bias Fo -ulas

and b_ b- least-squares estimators' of 0 andYX-W :YW.X yx.w

spectively. Also, let B.4 and Bw.R be least-squaresPW-X -

estimators of

and-

f3qR.i71
and 4i71.R Under assumptions B1--B4,

E(byx.w E(byl ) = a_
Y X

E(B-irc. = 0-- -
YX-W

E(bilTi.x ) 7
T.77.51

That i, all four estimators are unbiased for their own coefficients.

But since the investigator is interested in relations at the individual

level, his estimates based on grouped data are biased unless

13YX.W
and ON.k _We-add a subscript to 0 to

indicate the regressor under consideration; that is, 0TJ will denote

the bias in estimating

the b as from estimating

[5.18a, ], we get

and

$YW-X

YX-W

from grouped data and 0_ will denote
X

From equations [5.15a, b] and

[5.19a] 0 = 5(BiR.i77 ) E(byx.w
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These bias formulas are complicated, especially for the prior regres-

sor W However, it is clear that there will be no bias so long as the

grouping variable has no direct relation to the dependent variable

oyz.xw °)

III-. The Taxonom for Two R essora

A taxonomy can be generated by Setting variouS combination of

8YZ.XW
and 8WZ _equal to zero. This generates 2 x 2-x 2 8

categories of grouping variables:

'(1) Z directly related to

0_XZW 0).0 0

9 and W
I3XZ-XW #

Z directly related to Y and X but not to W (0yz

0_ 0 0 ,

WZ
= 0

(3 ) Z directly related to Y and W but not to X Oyz.xw # 0 ,

8XZ-W ' BWZ # (3).

(4) Z directly related to Y , but not to X or W (8YZ.XW

-0 0 = 0
XZ.14 ' W

140
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(5) Z directiy related .to X and but not to Y

W -Z(8yz.xw °- 8: Z

(6) Z directly related to but not to Y or

13X2-14 ° ' 8wz 0).

, but not to Y or

( 0
YZ- XZ-W

(7) Z directly related to

(8) Z not lines ly related to Y , X or

-XZ-W °
= 0).

As the relation of W to X .can also affect bias ender certain condi-

tions, it is useful to subdivide each 'category on thebaeie of Whether-

127

0
YZ.XW

is non-zero or not. Figure 5.1 presents the sixteen path13XW.Z

diagram.

Table 5.2 summarIzes the results for bias in the:two-regressor

case. Grouping by a variable from five of the sixteen Subcategories

biases the estimate of at least one regression coefficient.- There are

obvious parallels ih the single-regressor case. When there is no

direct relation of' Z to Y , estimates are unbiased. However, when

the grouping variable is directly. related to both the dependent variable

and a regressor (Categories 2 and 3), the estimate of the coefficient

from the regressor is biased when the regressors are correlated. This

is analogous to Category I grouping in the biveriate caee and the

results are the same.

The only result that is not analogous to the hivariate case occurs

when Bxw.z # 0 and we estimate the coefficient of the prior regressor.

Under this condition, biased estimates 6 can result when Z
-YW-X

directly ielated to Y and X even though B F 0 .

-WZ
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(4) 0 it 0, = 0,YZ-XW XZ-W

a
xw.z

= 0

(5) 0 = 0
YZ-XW ' XZ.W

13
Y2-X14 X2

X14-2
0

129

- 0,

i 0, 0yz.

(6) = 0

$ 0rw-z

X2
0, = 0, 0

YZ-XW X2-W

xw-z
0
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(7) 0 = 0,YZ-XW XZ*111

=
XV. Z

0

(8)
YZ.X1.1 X

0
XW.Z

=

= 0,YZ XW la 'I

Z

= 0, 0 = 0, 0
WZ YZ.XV

0_ 0-
Xz*W

=0,

Figure 5.i Path diagrams for the subcategories of the taxonomy_in
the two-regressor case.
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Presence -f bias- from grouping as a function of taxonomic
subcaiegory in the two-regressor caSe.

Values of Parameters Bias in
Coefficients

aYZ-XW 13xz.w z. X.W

_00

o0

00

00

00

00 0.

140 00 0 0

00 00 0 #0

#0 0 00 0

#0 0 00 #0

#0 0 0 0 --

#0 0 0 #0

0 160 #0 0

0
,

00 #0 00

0 _#0 0 0

0 00 0 #0

0 0 00 0

0 0 #0 #0

0 0 0 0

0 0 00
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* =- Estimator of regression coefficipnt from grouped data is biased.



2

IV. kralicalions of FInding a

Our taxonomic approach clarifies certain questions raised by

earlier investigations of multiple regression. We have shown that bias

can result for only a subset of regression coefficients. In-fact,

conditions under which the estimator of a particular coefficient will

be biased c n now be specified.

Much has been left unsaid about the practical consequences of

grouping in the multiple-regressor case. Bias matin at least

some coefficients ip_141121,Liii_n_p_is, are formed randomly.

With non-random grouping, the investigator may group on a variable

which is prior to all others. Otherwise, he introduces bias in

estimating some coefficients by grouping jointly on the dependent

variable and posterior regressors.

The "structural equations" approach does enable the investigator

to deternjine which estimators are biased but the procedures quickly

become cumbersome as more independent variables are included. -More

work is needed to'determine the utility of this approach, especially

Jdhen compared with the procedures developed by Feige and Watts.

,
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CHAPTER 6

EMPIRICAL EXAMPLES IN THE SINGLE- GRESSOR CASE

So far we have considered ways of predicting how various grouping

procedures affect the estimation of simple linear regression coeffi-

cients. It seems appropriate at this point.to demonstrate how well our

predictions conform to empirical results. Information collected on

incoming freshmen at a large Midwestern university serves as the data

base for this investigation. Of 300 measures -f abilities, attitudes,

and interests collected originally, approximately 20 will be used.

Persons with missing information on anY of .these variables are dropped

from consideration.

First we describe the relevant variables and the form in which

theyent 1 the analysis. Next a sImple linear regression model is

hypothesized., and the regression slope and its standard error are

estimated from the ungrouped observations.

The data are then grouped. We vary the relation of the grouping

variable to the dependent and independent variables, the number of

groups formed, an0 the distribution of observations among the groups.

Estimates of the regression slope and its standard error are then
;-_

calculated from the grouped observations for each grouping variable.

The difference between the observed grouped and ungrouped slope estimates

(bias) is then compared with that predicted from the formulas of

Chapter 3. Indices of efficiency are ,also presented. We then discuss

the potential utility of composite estiMates, formed from the estimates

generated by different grouping characteriStics, in making inferences

about the individual-level relations.
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Description of _Data

All incoming freshMen at a large Midweatern universityWere

ad inistered an achievement battery consisting of arithmetic, mathema-
;

tics and reading comprehension subtests during their orientation se sion

prior to entering the-university. On the-last day of orientation, each

student was asked to complete inventories assessing his'personal history,

interests, his expectations regarding his university experience, and

his opinions about selected social and acade-_c issues. In our example,
-

thia information was later combined with data frOm admissions applications'

and with scores fr m the Scholastic Aptitude Test (SAT).

A. identification of Variables

We focus on the relation of achievement (X),to self-appraisal (Y) of

acime abilities and of SAT(X) to achievement (Y). Each student's total

score on the achie,rement test battery (ACH) represents his achievement

level. The indicator (SRAA) of self- ated academic abilities is a

weighted composite of responses to ten questions (Table 6.1) asking the

student to rate his abilities of his work in different academic areas.

The weights of variables entering the_composite self-rating ere

determined by variable loadings on the first factor from a principal

components analysis. The weights were relatively un form except that

mathematics ability and scientific ability had small weights. Thus the
0

analysis leads us to equate students' preceptions of their academic

ability mainly with their verbal communications skills.

Subgroups of students were formed on the basis of their_SAT, ACH and

SRAA scores. Students were classified into subgroups-according to the

highest two_digits of their ACH scores (AC112, 10 groups: 31-39, 40-49,

110-119;,120), of their SAT scores (SAT2 13 groups: 400-499, 500-

599, ., 1500-1599; 1600), and of their SRAA scores MAA2, 5 groups:
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Table 6.1. Questions included in composite self-appraisaI of academic
abilities (SRAA)..

Use the instructions below for answering questions 1 through 4:

"Rate yourself on each of the following traits as you reallyi think
you are when compared with the average student of your own age."

Scale: A. Lowest 10%
B. Below average
C. Average
D. Above average_
E. Highest 10%

_eddemic ability

2. Mathematital 'ability

3. Self confidence (intellectual)

4. Writing-ability

Use the instructions below for answering questions 5 -hrough 8:
.

"Rate yourself on how competent you feel you are when compared-to
other freshmen at the university"

Scale: A. Lowest 10%
B. Below average
C. Average
D. Above average
E. Highest 10%

5. Overall scholarship

6. Scientific ability

7. Reading skills

8. Intellectual self-confidence

9. Where do you think you are likely to rank wi h respect to grad s
in-your freshman class while in college?

Scale: A. Among the highest 10%
B. Above average
C. About average_
D. Below average
E. Among the lowest 10%

10. Forget for a moment how others grade your work. In general, what
is your own opinion as to how good your academic work will be?

Scale: A. Excellent
B. Very good
C. About Average
D. Somewhat below average
E. Much below average
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-2.99 to -2.00, -1.99 to -1.00, -0.99 to 0.99, 1.00 to 1.99; 2.00.-to

ACH2, SAT2, a d SRAA2, then, were-the'grou 'rariables:based on- ACH SAT*

and SRAA, respectively.

The remaining grouping variables were selected according to the

following criteria:-

1. The variable has appeared frequently in studies of the relations

among academic self-appraisal, achievement, and Aptitude
--r.

parental income, parental education, parents' educational .

aspirations for their children).

2. Alternatively, the frequency distribution of the variable and

its pattern of zero-order correlations with ACH, SAT and SRAA

suggested that it would be a suitable representative of a

particular taxonomic category (e.g, number of semesters of

high-school physical sciences, student opinion about whether

college is worth the effort, and the last 2 digits of the

student identification number).

TablA!. 6.2 lists the grouping-Variables, ordered adCording to huMbet

of groups-formed (except for the two- "identification" variables at the

top -hich serve as random numbers in our example).

B. Distributional and Relational Properties of Ole Variables

Table 6.3- lists for each study variable the mean, 'standard deviation,

and skewness coefficient and zero-order correlations with SRAA, ACH and.

SAT. Only the 2,676 students with complete informatio- on all variables

are used here and later.1

-After the bulk of the analyses was completed, it was discovered that
there were missing observations on the grou.ling characteristics
CL1MP, COLEFF, and QCJOB. In addition-certajJ1 modifieations Were .

made in the response categories of ANTDEG.. in.its original foKm,
ANTDEG formed nine groups. In the results reported here, however,
students responding "Other (9)" were dropped, and students anticipating
any professional degree beyond the masters level (responses 5, 6, 7,
and_8) were.collapsed into a single group numbered "5". Thesizes- of
the subsamples defined by the acceptable responses to CLIMP, COLEFF,
QCJOB, and the modified ANTDEG- -were 2,632, 2,669, 2,637, and 2,646,

a
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Table 6.2. 1nf rmat on on grouping va iables.

Variable
Identification

Number of Groups
After

DescrIption Aggregation

1D2 Last 2 digits _f student identificatio

ID1

HSGPA2

SAT2

ACH2

PARINC

REPGPA

POPED

ANTDEG

HSMATH

HMV'S

NOBOOK

.PARASP

SRAA2

CLIMP

COLEFF

QCJOB

Last digit of student identification

High school's report of student's grade
point average on a 4-point scale
(highest 2 digits)

Highest 2 digits of
Scholastic Aptitude

Highest 2 digits of
Achievement Battery

Student's best estimate of 1970 parental
income before taxes

Total score from the
Test

Total score from the

Student's report of average grade in
secondary school

Stvdent's report of highest level of
formal eduCation obtained by his father

Student's anticipated highest academic
degree

Student's report of number of semesters
Of high school mathematics

Student's report of number of semesters
of high school physical sciences

Student's report of number of books in
the home

"What is the highest level of education
that your parents hope you will complete?"

Highest digit and sign of composite
academie self-opinion

"My grades are:markedly better in courses
that I see I Will need later."

"I often wonder if four years of college
will really be worth the effort."

"I often wish that I were offered a good
job now so I wouldn't have to spend four
years in college.

100

10

23

13

10

10

7

5

5

5

5

5

4

4
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Table 6.3. Means, standard deviations, and skewness'coefficien,_s of
study variables, and the zero-order correlations of each
variable with SBAA, ACH, and SAT.

Variable
Name Mean

Standard
Deviation Skewness

Correlation with
SRAA ACH SAT

SRAA 0.008 1.006 .223 1.000 .529 .574

ACH 84.766 15.463 -.364 .529 1.000 .839

SAT 1068.846 177.209 .068 .574 .839 1.000

1D2 49.561 29.126 .003 .019 .020 .008

ID1 4.453 2.865 .011 -.033 -.042 -.047

1iSGPA2 3.157 .469 -.067 .370 .535 .488

SATZ 10.235 1.798- .064 .566 .827 .987

ACH2 8.024 1.572 -.333 .522 .983 .827

PAR1NC 6.308 2.289 -.234 .064 .070 .076

REPGPA 3.203 1.284 .232 -.455 -.490 -.469

DOPED 3.987 1.418 -.321 .145 .139 .157

ANTDEG 3_867 .959 .687 .264 .156 .140

HSMATH 4.332 .879 -.260 .202 .479 .346

HSPHYS 2.623 .977 .319 .209 .318 .257

NOBOOK 4.104 .978 -.769 .196 .146. .203

PARASP 4.458 .626 -1.523 .172 .066 .087

SRAA2 .005 .689, .399 .885 .476 .520

CLIMP 2.201 .821 .304 .074 .147 .165

COLEFF 2.695 .951 -.209 .189 .134 .114

QCJOB 3.330 .821 -1.151 .199 .105 .118
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The variables based on the student's identifica number (ID2 and

1D1) have rectangular distributions as expected. Their intercorrelations

with the main variabl- are close to zero. They satisfactorily represent

Category IV ("random") grouping.

In this s iple, parental income (PARINC) is weakly related to

achievement, aptitude, and academic self-ratings with correlations not

much larger than those from the essentially random ID variables (POPED

and NOBOOK).

Anticipated highest degree (ANTDEG) and parental aspirations (PARASP)

correlate moderately with each other, (.39), but do not correlate with

other grouping variables. Both correlate higher with SRAA than with ACH

and SAT, perhaps because of similar biases or sets in all student self-

report measures.

The grouping variables generated from ACH, SRAA, and SAT (ACH2,

RAA2, and SAT2) and the indicators of high school grades (HSGPA2 and

REPGPA) have substantial correlations -ith the main variables (ACH, SRAA,

and i'kT). In general these correlations follow predictable patterns.

ACH2 correlates highest with ACH, next highest with SAT. SAT2 correlates

highest with SAT, next highest with ACH. SRAA2 correlates highest with

SRAA, and the order of its correlations with SAT and ACH is the same as

for SRAA. HSGPA2 has stronger correlations with the two total test

scores than with academic self-rating. The profile of correlations for

REPGPA is flatter than that from HSGPA2, but it maintains the sa_ _ order

f magnitude.

respectively. An examination of the means, standard deviations, and
intercorrelations of SRAA, ACH, and SAT for these subsamples did not
indicate any consistent and important deviations from the estimates
based on the entire 2,676 observations.
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The predominat of four- and fi -choi e variables has the advan-

tage of easy corivertahility to group classifications and the disadvantage

of low reliability. The -ubstantive impor_ _ce of those short scqles
-

lies in the diversity of their patte

aptitude, and academic self-rating.

of worklation with achievement
'A.

will he shown sub equently,

reasonanly precise2 estimates of the relations at the individual level

can be obtained by grouping on some of these variables, while grouping

by others yields- wildly misleading esti ates. Determining which

characteristics 'coincide with high precision in empirical data is

particularly important a_ this point in the study of grouping effec s.

C. Review of Factors Affecting Within-Category Precision

-The mechanisms controlling the comparative precision of e timates

from different grouping characteristiethin a given category vary

according to category. The four key "forces" determining precision

within a taxon_mic category are (1) the relative strengths of the

relations of the grouping Variable to the dependent and independent

variables, (2) the coarseness of the grouping, (3) the between-groups

variation.in the independent variable for a given grouping characteristic,

and (4) the distribution of the individual observations.among the groups.

We review briefly th07manner in which these forces operate, according to

the theory developed earlier,

1. Strengths of Relations of Z to X and Y

The standardized regression coefficients best indicate the

strength of lations Within a given sample. An "*" is introduced

2
-There is no exact-formula,for the "precision" of estimation. Precise
estimates generally combine sTall bias (in our case, 13,7R byx) with

small mean-squared error fMSE = (bias)2 + SE(B--)2] . Whether bias
YX

or mean-squared error is more important in defining precision depends
on the purpose for which the -stimate will be used.
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as a superscript for regression coefficients to denote that the

coef,icients are standardized in this sect on. In Category III,

according to our theory, variables with the weakest direct relation

to Y (small 4z.x) and the strongest relation to X (large
°.XZ

yield the most precise estims es.

The-influence is more complicated_ in Category I. In gcneral,

large 03*42 and small lead to gre ter precision. More can beYZ-X

said if we fix one parameter and vary the other, or consider the ratio

of to
-XZ

(a) For
fixed °,CZ

of any size, the

the smaller the bias.

smaller the value of
YZ-X

.(b) For small (leas than .2 but significantly different from zero)

values of
'

6 larger values of 0 lead to smaller bias.'YZ,X XZ

(c) Wbenever exceedsaxzfor a Category I variable, aYZ-X

particula ly poor estimate of
Y

results from grouped

observations.

2. Coarseness

The coarseness of grouping, by which we mean the number of groups

formed ) from a fixed number of observations (N) , largely de-

termines the efficiency with a Category IV grouping characteristic.

The strength of relation of Category IV variables to the main variables

i- inconsequential; hence, they.group observations in an essentially

random fashion and the precision of their estimates is influenced

only by m

Coarseness influences bias and efficiency in oth _ categcr es to

esser degree.

to X and Y

Iftwovariables Zl and Z
2

have similar relations

XZ YZ .X yZ
= ) the one with more

-
1 2 2

X
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groups is likely to,yield estimates with smaller bias and higher

efficiency.

Bet -Groups Variation in X

Large betw-en-groups variance in the independent variable-implies

small bias and high efficiency. With fixed values of m and relative-

ly constant values of
d

0 the grouping variable which
-YZ.X 3CZ

maximizes the between- roups variance of X yields the most precise

estimate.

4. DistributIon of Individual Observations Among the Groups

The mean of the dependent or independent variables in a group

with few observations is unstable. Such means can have a dispropor-

tionate impact on the estimates from grouped observations. Unpredic-

table variation of a few group means when m is small is potentially

more damaging than the same variatIon among a large nu ber of

observations at the individual level. At the group level, the only

observations are the means. InOtability in any cell mean has a

greater impact on the precision of the parameter estimates than does

instability at the individual level. When the observations are not

evenly distributed a ong the groups, Precision eau be affected.

The four forces do not act independently. It makes little sense

to consider the impact of a; and ignore the size of
(3XZ

, or toA

concentrate on coarseness without considering variation in group size.

Thus the inve..tigator must keep in mind that the forces can interact.

In the discussion of the empirical data, we will only reluc antly at-

tribute a loss of precision to a single source.

II. Re ression of Academic S lf-Appraisal on Achievemen

As our first example, we regress academic self-appr isal
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on achievement (ACH = X ). Alternate models of the relation between ACH

and SRAA are certainly reasonable. However, -e only wish to illustrate

the effects of grouping, and the chosen ordering is informative.

At the outset we standardize all variables. The proeedure for

generating group esLimates and judging their precision are invariant with

regard to linear transformations of the variables. Once the observations

are standardized, the regression coefficient at the individual level (the

standardized regression efficient) is an unbaased estimator of the

correlation coefficient; I. E(b
YX YX

=
YX in the.single regre

sor case. Thus we obtain estimates of o
YX when we regress V on R

Under these circumstances, comparisons of Buc with byx are checks en

the bias in estimating the individual-level correlation coeffici nt from

grouped data. (At this point -e will drop the denoting standardized

coefficients since all coefficients in the remainder of the chapter will

be generated from data that were initially standardized.).

A. Regression Coefficients from Ungrouped Data

According to the analysis of the 2,676 observations, the eqt

relating to SRAA(Y) to ACH(X) is

= .529(ACH)

That is, the slope of the regression is b_
YX

.529 . (The intercep-

essentially 0 since all variables were standardized Also,

and

SE(byx ) - .0032

.281 (the squared multiple correlation coefficient).

In a study such as this, :he investigator usually generalizes beyond-

the.2 676 students included in the analysis. After all, these students

are lint even the entire freshmen class entering this university during
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the 1971-72 academic year. Apparently, our deletion of subjects did

leave a representative sample of the freshmen class.

B. Categorization of Grouping Variables

To classify grouping variables (2) into taxonomic categories

requires information beyond that in Table 6.3. Table 6.4 contains for

each estimates of the regression coefficients
YX-Z' YZ*X" YZ'

13i2)
and their standard errors (in parentheses b low). An estimate of

the between-groups standard deviation, oi-c , of ACH for each of the

grouping variables is also given.

The taxonomy introduced in Chapter 3 eate orizes on the basis of the

magnitude of and 13

13YZ-X XZ
Operationally, for initial categorize-

-YZ-X f3XZ
tion,werequirethata_and exceed 3 times, their staadard

errors to be considered significantly different from zero. This rather

stringent criterion leads to the following category assignments

[Variables within categories are ordered by_the number of groups they

fo_ (: ) .]:

3A total of 54230 students completed the questionnaires during orienta-
_on of the 1971-72 academic year. Other students enrolled without

attending orientation or participating in the orientation tests and
survey. Students who did not begin Fall term were also excluded from
the 5,230 total.

4An early computer run (carried out before SRAA was created and
before the subtests composing the achievement battery were combined
to obtain the total achievement score) based on the 4,241 freshmen
with reported SAT scores indicated that our students are like their
fellow classmates. The average student in our sample performed
slightly better on the SAT (1069 to 1054) , about the same on the
achievement battery (85 to 84) , and had the same high school grade
average, and reported a slightly higher parental income. The rela-
tionship between SAT and PARING was somewhat strofiger--(0;l09
compared to 0.076) for the 3,647 students with SAT scores who-ajisb
reported their parents' income than for the students in our sample.
Differences in means, standard deviations, and intercorrelatiOri§ on
other characteristics were minor also.
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Table 6.4. Estimates of parameters relating ACH(X) and SRAA to
possible grouping variables (Z)3.

Variable
Name

Group Size

(m)

ID2 100

ID1 10

HSGPA2

SAT2 13

ACH2 10

PAR1NC 10

REPGPA

POPED 6

ANTDEG 5

HSMATH 5

HSPHYS 5

NOBOOK 5

PARASP 5

SRAA2

GUMP 4

COLEFF 4

QCJOB 4

Parameter Estimates

°YX-Z a
-YZ

.529 .008 .020 .019 .189
(.0164)`' (.0164) (.0193) (.0193)

.528 -.011 . -.042 -.033 .078
(.0164) (.0164) (.0193) (.0193)

.463 .123 .535 .370 .552
(.0193) (:0193) (.0163) (.0180)

.194 .406 .827 .566 .831
(.0282) (.0282) (.0109) (.0160)

.460 , .070 .983 .522 .984
(.0896) (.0896) (.0035) (.0165)

.527 .028 .070 .064 .122
(.0164) (.0164) (.0193) .0193)

.403 -.258 -.490 -.455 .510
(.0182) (.0182) (.0169) (.0172)

.519 .073 .139 .145 .150
(.0165) (.0165) (.0192) (.0191)

.499 .186 .156 .264 .159
(.0162) (.0162) (.0191) (.0186)

.561 ,-.006 .479 .202 .489
(.0187) (.(187) (.0170) (.0189)

.515 .046 .318 .209 .365
(.0173) (.0173) (.0183) (.0189)

.511 .122 .146 .196 .148
(.0164) (.0164) (.0191) (.0190)

.520 .138 .066 .172 .077
(.0162) (.0162) (.0193) (.0190)

.139 .819 .476 .885 .481
(.0099) (.0099) (.0170) (.0090)

.530 -.003 .147 .074 .163
(.0166) (.0166) (.0191) (.0193)

.513 .121 .134 .189 .144
(.0164) (.0164) (.0192) (.0190)

.514 .145 .105 .199 .113
(.0163) (.0163) (.0192) (.0190)

a
All variables have been standardized prior to grouping so that
a rm a_ ... = 1, p , and 0-
-Y -X f3n -17 YZ

-Numbers in paren eses are standard errors of the regress 01_ coefficients.
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Category _I

HSGPA2
SAT2
ANIDEG
REPGPA
POPED
SRAA2

HSMATH
NOBOOK
PARASP
COLEFF
QCJOB

Category II

YZ-
3SE(17.x

146

Category III

ACH2
-PARING
HSPHYS
CLIMP

3SE(xz0 (NONE) ID2
Ini

As we mentioned previously, no characteristics belong to Category

II, and the number- falling in Category I is large. SRAA2 and ACH2

are special cases within Categories I and III. These, respectively, are

the best approximations to what Blalock (1964) and Hannan (1970, 1971

1972) have called "grouping _on the dependent variable" and "grouping on

the independent variable".

C. Prediction of Bias from grouping

A modification of the bias formulas ([3 19'], .28T], [1.29],

[3 31]) from pages 63 and 64 can be-used to predict the bias from

grouping for our empirical examples. Remembering that

- equation for estimating the bias from grouping on a particular

is given by
a2

YZ.X-XZ 2X
[5.1] 0

This approximation is particularly good when the sample e ther equals

the population or is very large. -The'small sample properties of 0

are less predictable when both Byz.x and .0 are non-zero. We have
.

-included acadel-ic self-appraisal in our example becanse this type of

data-is often.colicted anonymously. If so, we cannot co -elate ACH
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and SRAA at the individual level. The data collected in this udy

were completely identified, and thus the results under constraints of

anonymity can be compared with the results from completely identified

data.

As pointed out in Chapter 1 [discussion of Problem (D)), one way

to handle anonymous data is to analyze relations at the group level.

For example, students can be asked to indicate their number of

semesters-of high school mathe atics (IISMATH) when they complete the

attitude questionnaries anonymously. SRAA and ACH scores can then

be grouped according to students' HSPIATH responses, and the re -es=

sion of SRAA on ACH can be esti

of SRAA and ACH- ---

Tobesure,arestillnotabietoestimateB_directly
YZ*X

since
c'XY

cannot-be determined. Thus we cannot estimate grouping

ed from the weighted group means

bias Huttheestimateof P_YZ .can be used in place of the

unobtainable esiimate of _ _ in the equation for bias. This

substitution yields a function of -t e 'estimated grouping bias.

[5.2) n

YZ XZ .2

In most cases, enough is known about the covariance of X and Y

to determine_at least its sign. When is positive (nega ive ) and

0 and have the same sign, Oyz provides an upper (lo ) boundXZ

for a .yz.x
When 0 and axy have opposite signs., 0yz becomes

a lo-r (upper) bou- d. Thus, we expect small n valves to occur with
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good e timators of and large r values with poor estimators.YX

Table 6.5 list., for each grouping variable, the predicted biases

(both 8 and IT ) in estimating the coefficient from the regression of

SRAA on ACH . Later, we shall compare these values with the

observed biases resul grouping.

D. Estimates of Regressions from.Different Grouping Methods

Two standards are applied for judging the precision of estimating

a from data grouped on a given Z . First, estimates of bias andYX

efficiency from grouping on different variables are compared, both

within and between categories. These comparisons focus on the effects

of within-variable factors o- precision and on the relative precision

of different categories of variables.

We also examine precision on an absolute scale; i.e. , independer

ly of the scaling of ACH and SRAA . To do this, we (a ) compare

observed'and predicted bias-from grouping with twice the standard error

f it.s estimate, SE(BiR ) ; and (b) examine indices of efficiency

generated from the ratio of the mean-squared error from ungrouped data

to the mean-squared error f om a particular groupin- Since these

standard indices of efficiency tend to be small due to the coarseness

f grouping, we also compare the efficiency of a particular grouping

with the, efficiency of forming an equal number of groups randomly

m-1 N-1) .

1. Relative Precision by Category

Table 6.5 contains estimates of the regre.sion coefficient

their standard errors, the observed and predicted grouping bias, and

estimates of the square root of the mean-squared error -f, each

group ng variable. The grouping variables are ordered within ca

gories by the size of the obs rved bias except for AC1L2 and SRAA2 ,
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Table 6.5. Estimates fiom grouped data of coefficients describing the
regression of SRAA on ACH.

Number
of Bias Predicted

Grouping Groups Bias , from
Variable SE(Bu

(10 -Yx Observed

_CILILIYY IV

11)2

11)1

100

' 10

10

.558

.442

-531ACH2

PARINC* 10 .558

HSPHYS 5 .571

CLIMP 5 .717

S1tAA2 5 1.853

HSMATH' 5 .414

SAT2 13 .671

HSGPA2 23 .702

POPED 6 .911

REPGPA 7 .917

NOBOOK 5 1.334

COLEFF 4 1.461

ANTDEG 1.631

QCJOB 4 1.853

PARASP 5 1.946

.029 .004 .040 .0739 .0794

-.087 .075 .225 .1831 .2027

.002 .002 .142 .0615 .0615

.029 .130 .295. .1314 .1345

.042 .095 .433 .0915 .1294

.188 .016 .401 .3971 .4382

1.324 1.295 1.507 .0631 1.3255

-.115 -.100 .307 .0248 .1176

.142 .150 .210 .0670 .1570

.173 .150 .451 .0287 .1753

.382 .440 .874 .1626 .4152

.388 .360 .635 .0617 .3929

.805 .800 1.285 .1133 .8129

.932 .765 1.194 .1160 .9392

1.102 1.117 1.586 .2680 1.1341

1.324 1.188 1.630 .3533 1.3703

1.417 1.519 2.048 .7339 1.5958

8Estimates from ungreuped data: b .529; SE (byx

SE(B-
YX

(OBSERVED BIAS)2 (SE(But

-Cwjth the exception of ACH2 and SRAA2 , variables
ordered on the basis of observed bias.
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which are listed first in their respective categories.

In general, the esti ates conform to our expectations though the

bias and mean-squared error (MSE)5 are enormous for some Category

variables. Category grouping yielded estimates with small bias.

In fact, only grouping on ACH2 (grouping on the independent variable)

gives be precision (small bias end small mean-squared error ) than

the estimate from ID2 . But it took ten times as many groups to

achieve this level of accuracy.

The bias from grouping by ID1 the other Category IV variable,

is three times as large as the bias from grouping on ID2 . Its

estimated MSE is more than six times larger than the MSE from ID2.

Category III grouping yields smaller bias than grouping by ID1 in

three out of four cases, the exception being CUM? which forms less

than half as many groups. Certain Category 1 variables yielded esti-

mates with smaller MSE's. Cle,x1y, random grouping should be avoided

unless many groups can be formed and no Category II variable is readily

available.

Three of four Category III variables yielded highlY satisfaCtory

estimates with small MSE's. The estimate from grouping on 'ACH2 is

the most efficient of all estimates generated.

Only CUM? among the Category III variables yielded an estimate

with considerable bias and large MSE The regression coefficients in

Table 6.4 suggest that CLIMP acts as a suppressor when it enters the

model with ACH and S As mentioned earlier, the small.number

SIn tableef.5, 1/27ffi was used instead of MSE for possible compari-
son with SE(E,) . In the discussion that follows 'E and MSE .YX
are interchangeable.
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-he -e_i-

sion of its estimate.

Thr p Category I variables, HSMATH, SAT2, and HSGFA2 , yielded

precise estimates of a relative to the other-Category I groupings.
-YX

All have substantially larger zero-order correlations with ACH than,

with SRAA , and their between-groups standard deviations of ACH are--

large.

The remaining Category I Variables, including SRAA2 yield esti-

mates with large bias and large MSE . At the extreme ( ARASP)', Bu

isalmostfourtimestheung-roupedbYX 6amd has a MSE 200 timeA:the

MSE -of byx

As Blalock and Hannan have stated, grouping on the dependent yard.-
. .

able is disastrously biased. The unmeaSured factors represented by the

disturbance term in the initial lia a model (Equation [3.1]) are

confounded with the effects of the primarY regressor to such a degree

that the relation of ACH to SRAA is unrecognizable.

Fortunately, there are warning signals of poor estimation from

Category I grouping, even when anon_ __ously collected data prevent

estimation of a
YX

--
Of the eight Category I variables that yielded

the largest biases, all-except REPGPA had higher zero-order correla-

tions with SRAA than_ with itCH .e., r r_ ) . With SRAA2,
-XZ

6We must re-emphasize that the superiority of a particular grouping
variable is a function of the relation to be estimated. When we
instead regress ACH on SRAA , for which byx .812 , grouping by

ANTDEG (BcR .851) and QCJOB (BcR .751) result in muall bias

while grouping by HSPHYS (BcR 2.452) and FARINC (BcR - 1.848),

result in large bias. The standard errors for ANTDEG and QCJOB
are also small for this regression. The question to be answered
determines the quality of a particular characteristic for grouping
purposes.
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ANTDEG, QCJOB, or PARASP

larger than 8X2 .

PARASP) create a small

152

uping variable, Byz.x even becomes

Al o, the worst Category I variables (ANTDEG, QCJOB,

, and distribute their observations unevenlyX

among a few initial groups.7

2. Preci ion Independent of Scaling

There are no universal standards for judging what are acceptable

values for bias and mean-squared error. The purposes for which an es i-
,

, mate is to be used determine what i "suitably precise". However, we can

begin to set standards for acceptable bias and efficiency from grouping

which are invariant under scalar transformations of variables.

We suggest that the investigator compare the predicted bias (0)

from a given grouping with twice the standard error of its corresponding

estimate (13,- If 0 is. .larger thamC2 SE (HfR) , drop the grouping

variable from consideration. 'Selection among the.remaining grouping var-

iables can be based on the.size of 0 , on the efficiency of estimation,

or on some otr criteria (e.g. , ease of collect7on or number of groups).

To judge the efficiency of a given estimate, the investigator can

calcula e E f(b_ MSE(byx)/MSE.(3R) . Eff(byx,BvR) should

be as large as possible. _Certainly, variables with efficiencies smaller

than the worst of the Category IV variables should be e'cluded. As

a further comparison,

ratio Eff(b B,)/Eff(b B
-YX --YX'-(m-random groups of equal

ratio provides some indication of the gain over random

suggest that the investigator

each case.

calculated the

size))

grouping in

This

7The lowest two groups of AM:DEC's five groups contain fewer than
100_observations. Eighty-six (86) per cent of the observations on
QCJOB are in two of its four categories. Ninety-seven (97) per
cent of PARASP's were either "complete college" (4) or "obtain a
graduate or professional degree" (5).-
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If we follow these guidelines in our example, we obtain the

results depicted in Table 6.6. We have also compared the observed

bias to 2 SE(Bu) in the table. With the 2 SE(But) as a cri-

terion, all Category I variables are excluded, and all Category III

and 'Category IV variables are retained, regardless of whether we -

look at observed bias or

In everY case, efficiency is s- 11, but this occurs because of

the small m values for almost every variable. If we compare the

efficiency of each systematic grouping.- th that of-grouping by

ID1 , we can exclude the worst Category III variable, which was

previously retained. Furthermore, there are marked improvements

in efficiency relative to random grouping for all Category III

groupints and for the best ef Category I grouping variables.

The variables that remain after applying exclusion principlea:

for both bias and efficiency yielded estimates with the smallest

biases and smallest MSE's overall. In Section 6.II.F, we

suggest how the investigator might combine his best estimates when

he does not wish to select among them.

Predicted Bias vs Observed Bias.
1/

-Despite the specification and measurement e= ors, our predketions

(Table 6.5) as to bias stood up well. For every grouping where-the

observed bias was greater than .2, 0 was greater than .2 . With the

exception of FARING , the predicted bias was less than .1 whenever the

observed bias was less than .1

The,prediction from 0 worked poorly only for ID1 and CUM? .

In the case of ID1 , it is the sign reversal that troubles us and not

the size of the error. There seems to be no reasonable explanation for

the sign reversal other than the use of few groups with a random
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Table 66,h Compar son of estimaies from grouped data nsing-dif erent
criteria for-.acceptable bias from the regression of SRAA
on ACH.

Grouping-
Variable

(m)

Catmary_iK

102 (100)

ID1 ( io)

Category

ACH2 ( 10) .052 15.29

[ObserVed 11Predicted
-Masi I Bias (01
SE(137T-tk2SE(13--)Effac---Wf

YX- -YX,13-YX
(byx, random

Eff(b
YX-

+ . 040 1.08

. 016 4.71

PARINC ( 10) + .024 7.06

HSPHYS ( 5 1- .025 16.67

CLIMP ( 4 ) -I- A- .007 6.36

Ca !gory i

SRAA2 C 5 .002 1.33

HSMATH ( 5) _ _ .027 18.00

SA12 ( 13) .020 4.44-
HSGPA2 ( 23) .018 2.20

POPE]) ( 6) .008 4.21

REPOPA ( 7 ) - .008 3.64

NOBOOK ( 5 ) - - .004 2.67

COLEFF (4 ) _ .003 2.73
-.

ANTIDEG ( 5 )
_ _ .003 2.00

QCJOB ( 4 .002 1.82

PARASP ( 5) .002 1.33

a".411-Within'benndse acceptable bias
--"-" Outsid6 bounds'of acceptable bias

b_
With the exception of ACH2 and SRAA2, variable within ca e-ories
are ordered on the basic .of observed bias see Table 6.5)
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grouping variabl. In the previous section, we provided an explanation

as to why estimates from CLIME grouping might be disappointing (its

suppressor relation ith ACH and SRAA and its smaller nUmber of

groups); this explanation may also hold for poor prediction from CLIME

Every value of ii proved-to-be-larger_than-ihe_observed bias. .The-

Category III and:Category IV variableS along with the three. Category

variables with the smallest bias yielded the lowest values-of ii

F. Composites of Estimates .from Multiple Grouping-Variable.

The above findings suggest that an investigator Can distinguish.

those grouping characteristics which lead to reasonably accurate

eatimates from those providing extremely misleading:ones in empirical

studies similar to ours. Once this seParation has been aerempiiabed,

the investigator can choose a characteristic with small predieted bias.

Better yet,,he can use the available information abaut -each characteris

tic and its expected bias to form a weighted composite of good grotiped

estimates. For example, he can weight grouped estimates in aninverae

proportion to their predicted_bias. Alternatively, h_ can give addition-

al weight to the more stable estimates.

Table 6.7 provides two examples of composite extimates.

Example (A), we assume knowledge of so that 0 can be used. In

Example (B), oyx- is treated as unknown, and thus the 71 values are

Used to weight the estimates. In each example, five of the seven grou--

ing variables with the smallest predicted bias are used. We exclude

ID2 as redundant with ID1 , and because it forms many more groups than

-
any other variable. ACH2 is excluded on the grounds that composIting

would be unnecessary if grouping on ACH2 were possible. Three sets of

weights are determined: (1) in inverse proportion to the predicted bias,

(2) inverse proportion to SE(B,a) and (3) in inverse proportion to the
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Table 6.7. Weighted Composit-s from grouped estimates of from
the regression of SAE\ on ACH: YX

Groupinga
Variable- SE(Bu [Predicted

Biasl
Weight
(1)c

Weight
(2)d

Weight
(3)e

on 0.SAIWeibased

CLIMY .717 .3971 .016 .243 .130 .162

ID1 .442 .1831 .075 .207 .195 .202

--iL5YHYS .5711 .0915 .095 .195 .222 .217

HSMATH .414 .0248 .100 .192 .242 .232

PARINC .558 .1314 .130 .174 .210 .188

Estimates yielded by the weights .562f .531, .538-

ihts based on Tr

SAT2 .671 .0670 .210 .213 .229 .236

ID1 .442 .1831 .225 .211 .224

PARINC .558 .1314 .295 .199 .209 .202

HSMATH .414 .0248 .307 .197 .242 .226

CLIMP .717 .3971 .401 .180 ..126 .111

Estimates yielded by the weights -- .568- .566- .554-

a
In both examples the grouping variables are ordered_by the predicted
bias.(6 or

-The B-- were transformed to Fisher Z's before weighting and averaging.-YX

cimightm.(mpredictedbias(Z1) ]= [Predicted bias Z,)i} /
-41[(Predicted bias (Zi)). 1

-Weight_UY -7..[E[SE(E] - SE_ vR)i) / 4EfSE

e
Veight(3)=I[WeightMforz][Weight(2)forZA}/ [- u ator)].

1-

b
YX

.529
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predicted bias and SE(Bu ) . Sinee observations were initially

standardized, the were transformed to Fisher 2 before weightingYX

.and averaging.

The resulti ed composites are highly sat s±actory.
_ 1

composites we e within .04 of b
YX

Estimate A(2) equals the

estimates from grouping on the independent variable ACH2 . The re ain-.

ing composite estimates do nearly as well, equaled or exceeded only by

grouping on ACH2 , and in some cases, by grouping on ID2 .and FARTNC.

Clearly, Judicious weighting' f grouped estimates can lead to precise es-

timation of the ungrouped regression coefficient.

tgzI2Efipn _of Achievement on Aptitude

In our next example, we estimate the regression coefficient of

achievement test performance (ACH) on aptitude test performance (SAT).

Anonymity is not usually a problem in this case, but grouping could be

economical.Thusweassumethatois known and limit discussion toYX

the full-information situation.

This example will be eonsidered in much less:detail. Our primary

purpose in- this second empirical example is to illustrate that the

suitability of a grouping variable depends on its relations with the

main variables. We again standardized all variables prior to eonducting

the analysis.

with

and

A. Regression with Ungrouped Data

The equation telating ACH(Y) ed sAT(x)

ACH ---,- .839(SAT)

SE(by ) .0105

.704
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B. Categorization of Grouping Variables

Table 6.8 contains estimates for_each grouping of the regression

coefficients , 0
'

and 0- ) and-their standard errors..XZ -YZ

The between-group standard deviatiomi- -x SAT for the grouping

variable is also included.

Again we required an estima_e of either 8 or to
-YZ.X XZ

exceed three times its standard error to be considered significantly

different from zero. The resulting categorization was as follows:

3SE(8
-YZ.X

HSCPA2
ACH2
REM%
SRAA2

ANTDEC
HSMATH
HSPHYS
COLEFF

_Category II

(NONE)

< 3SE(8__
YZ.X YZ-X

Category III

SAT2 PARASP
PARINC CLIMP
FATHED QCJOB
NOBOOK

_Category IV

ID2
ID1

Categories of several variables in the ACH-on-SAT regression

differ from their categories with respect to the SRAA-on-ACH regres-

sion. ACH2 , which now represents grouping on the dependent variable

rather than on the independent variable, moves from Category'III to

Category I. .HSPHYS also moves due to its correlatien with ACH . The

relative sizes of r
YZ

and again-serve-as-usefdl-elues to poorrxz

YZ rX.Z
in six of the eight

Category I groupings.

The number _L variablea in Category III is striking. Of the seven

Category III variables in the AO-on-SAT reg ession, five were in

Category I in the regression Of SR_AA on ACH . :rhe correlations of

the Category III variables with ACH and SAT do not differ greatly
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Table 6.8. Estimates of paramet -s relnting.SAT(*.-and:ACH
alternative grouping variabl-e

Parameter Estimates

Variable Group Size:
Name (m)

102

ID1

HSGPA2

SAT2

ACH2

PARINC

REPGFA

ROPED

ANTDEG

HSMATH

HSPHYS

NOMA

PARASP

S AA2

CUM'

COLEFF

QCJOB

100

10

23

10

10

7

5

5

5

4

4

.839
b

.014
(.0105) (.0105)

.839 .003
(.0105) (.0105)

-.759

,..,(0116) (.0116)

.884_ ..042
(4662) (.0662)

.916

.008 -.020 .186
(.0193). (.0193)

7.046 -.042
(.0193) 0193)

.488 .535
(.0169) ;0163)

987 .828

(.0031) (.0109)

.827_ ' .983

(.0035)(.0061)

A338
(.0106):

781
(.0117)

(.0061)

;006 -

(.-0106)

- 124
(.0117)

(.0109)-

.076
(.0193)

-.468
(..0171,)

,838 .007' .157
(.0106) (.0106) (.0191)

,.834 .039 .-140

(.0106) (.0106) (i0192)

.765 .214 .346
(.0104) (.0104) (.0181)

.811 .109 .257
,(.0107) (.0187)

.844 -.025 .203
(.0107) G0107) (.0189)

.839, -.007 .087
(.0106) (.0106) (.0193)

.811 .054 -.520

(.0123 ) (.0123) (.0165)

.838 .009 .165-
(.0107) (.0107) (.0191)

.835 .039 .114

(.0106) _(.0106) (.0192)

.838 .007
(.0106) (.0106) (.0192)

--

.835

-;070 -. .146
.0193)

".490 .498
(.0169)

..139 .169
(.0192)

.156 .141
(.0191)

.480 .349
(.0170)

.318 .-294

(.0183)

.146 .204
(.0191)

.066 .101
(.0193)

531
(.0170)

.147 185
(.0191)

.134 134
(.0192)

.106

(.0192)

.123

aAll variables have been standard _zed prior to grouping so that
a. = a a = 1, 0 = p and

YZ PYZXV
b-
-Numbers in parenthesis ar- the standard errors of the regression
coefficients. 173
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in magnitude th.ugl the correlation of each Z with SAT_ is always

larger than its cor elation with ACH . The shift oDe SAT2 from

Category I to Category III was expected; it new represents groupin

the independent variable. The reMaining variables apparently enter

Category III in part because of the strong correlation between ACH

and SAT which the model apportions to the independent variable SAT .

C. Estimates of Regressions. from Different Grouping Methods

Table 6.9 contains estimated regression coefficients and other,

information. With a few minor exceptions, the results conform to our.

expectations. -

The prcision of Category IV grouping again is strongly related

the number of groups. The accuracy (bias) and stability (MSE) of

grouping on ID2 is exceeded only by grouping on the independent

variable (SAT2) . Grouping on ID1 yields a poorer estimate than

grouping on ID2 , on any Category III variable, and on half of the

Category I variables.

Category III grouping is clearly superior overall to grouping on

variables from other categories. Observed bias is smaller than

2 SE(BiR) for 5 of 7 Category III variables. (See Table 6.10.) The

exceptions are QCJOB and NOBOOR which form few groups with an

uneven distribution of observations among the groups.'

SRAA and COLEFF are the only Category I variables for which the

observed bias falls within 2 SE(Bu) . The estimates from the

Category I vari-bles, other than SRAA2 , in addition to yielding large

.
bias, are about as"71ne _icient as grouping on I111

The decision rules discussed in Section 6.II.D are also ur;aful

with this example. If a variable is eliminated when (a) 101 < MOH.

or (b) Eff(Bz;b Eff(B1-
D1'

*b) , only NOBOOK among the Category III
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Table 6.9. Estimates froth grouped data of coefficients describing the
regression of AA on SAT.

Number Bias
of Predicted

Grouping Groups a Bias from
Variable (TO YX Observed

CATEGORY IV

1D2 100 .832 - 007

ID1 10 1.053 .214

CATEGORY III
b

SAT2

PARINC

CLINT

POPED

QCJOB

PARASP

NOBOOK

,,-.2.---

CATEGORY lb

ACH2

SRAA2

REPGPA

COLEFF

HSGPA2

ANTDEG

HSPHYS

HSMATH

.003 .0590 .0594

.029 .2168 .3036

13 .838_ -.001

10, .817 -.021

4 .876 .036

6 .877 .039

4 .912 .073

5 .744 -.095

5 .718. -.121

'7--

10 1.168 .329

5 .899 .060

7 1.019 .180

4 1.054 .213

23 1.057 .218

5 1.120 .281

5 I.-237: .398-

5 1.396 .557

-.0 .0190 .0190

.021

.042

.038
-i

.054-

-.059

--174

.0598 . -X636

.0388

.0685' , .0788

.-0216 .0775

-.0903 .1310

.0372 .1266

.329 .0541 .3338

.072 .0543 .0009

.176 .0418 .1848

. ,241 .1169 .2438

'.219 .0329 .2205

.271 .0607 .2875

.296-- .0422 .4002---

.531 .0478 .5590

a
Estimates from ungrouped data: byx .839; = .0105.byx_

hWith the exception of ACH2 and SAT2, variables within categories are
ordered on the basis of observed bias.
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Table 6.10. .Comparison of estimates, from grouped data using different
criteria for acceptable bias in the regression _of ACH
on SAT.

Grouping
Variable

(m)

'Observed
Bias'

<2 SE(B--,)

'Predicted
Bias (6) a
< SE(B--

.

b
-YX,

B,
-YX

...--

Eff(byx,Bu)

IEFF b
-YX

,random Z

Category IV -

ID2 (100) .177 4.78

I1)1 ( 10) + .034 10.00

Category III

SAT2 ( 13) + '+ .553 122.89

PARINC ( 10) + .165 48.53

CLIMP ( 4) + .198
I

180.00

POPED ( 6) + + .133 70..00

QCJOB ( 4) - + .135 122.73

PARASP ( 5 ) + + .080
J

53.33

NOBOOK ( 5) _
I

- .083 55.33

Category?

ACH2 ( 10) - - .031 9.12

SRAA2 ( 5) + .130,' 86.67

REPGPA ( 7) - - .057 25.91

COLEFF ( 4) + I - .043 28.67

HSGFA2 ( 23) - - .048 5.85

ANTDEG ( 5) - - .037 24.67

HSPHYS ( 5 ) - - .026 17.33

HSMATH ( - .019 12.67

611+" Within bounds of acceptable bias.

"=" = Outside bounds of acceptablebias.

b
With the exception of ACH2 and SAT2, variables within categories are
ordered on the basis of observed bias._ (See table 6.9).
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variables is eliminoted and 09.1 the Category I var ables except SP

are dropped.

D. Predicted Bias vs. Observed Bias

The results of the predictions in the regression of, ACH on SAT

are.as satisfactory as the results in the earlier example. The

prediction from 1D1 grouping is again amo g the most errant.

general, however, grouping characteristici which produce good estimates'

can be selected on the basis of predicted b' s, especially when the

standard errors of the grouped estimates,are also taken into account.

163

IV. §1.413,esults
We set mit in Chapter 6 to demonstrate the utility of the grouping

concepts and methods developed in Chapters 3 and 4 under realistic

empirical conditions. The empirical evidence regarding the estimation

of conformed to the predictions fro_ the principle of incorpora-8YX

ting the grouping characteristics as variables in the structural model,

which, in turn, lead to the taxonomic categorization of grouping

variables. The latter classification resulted in clusters of readily

identifiable "good" and "bad" grouping variables under most aggregated

conditi ns. We further showed that if the investigator formed a

weighted composite of estimates from several of his best grouping

variables, his resulting estimate is invariably highly accurate.

Thus we demonstrated some effective strategies of es i ating sim-

ple linear regression coefficients (and zero-order correlation

coefficients) when data aggregat on is under the investigato control-

and the grouping characteristics under consideration have at least an

interval scale. To I certain degree, - our results are generalizi:- le to

naturally aggregated data wheie some ddgree of disaggregation is

1 7
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feasible. The possibilities of utilizing nominally scaled grouping
-

characterir:tics were discussed in Chapter IV, but the procedures

suggested for such va lables were not demonstrated empirically.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

_Sumuary of Findjjs

We have examined certain consequences of estimating regress±on

coefficients at the level of individuals from aggregated data. In

Chapter 1, various research contexts in-which such questions arise were

described and the main emphasis of our investigation was identified

-
In Chapter 2, we reviewed previous literature on grouping in the

two-variable case. The literatnre on estimating both correlation

coeffi ients and regression coefficients was considered.

In Chapter 3 we discussed the various factors which affect the

mation of the simple linear regression coefficient and zero-order

co 'claLion eoffieient when data are grouped on some interval variable.

With one exception, it -a- assumed throughout that there were no

measurement erro s in X . Though speaking in terms of ' _ructural

equation models is somewhat awkward when there are only two.variables

involved, this term was used because the bivariate regression was

simply a special case of a multivariate structural model.

We first demonstrated that the estimate of (3 (B--) from grouped
-YX -YX

data is unbiased if the assumptions regarding the disturbances in_the

simple model used by earlier investigators are s, icfied. However, the

. slope estirs tes from grouped data were shown to be less efficient than

the estimates from ungrouped data. This finding led to the criterion

of maxi ization of the between-group variance (minimization of the

within group va-iance) of the independent variable as an appropriate

method of judging the efficiency of alternative grouping prbcedures.
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The investigation was then expanded to consider in greater detail

the concept of grouping by 'grouping ariable". This lo,Y c suggested

that the criterion hy which the individual observations are to be

grouped can be treated as a random variable which may be related to

other variables in the structural equation system. Furthermore, the

system specified that the grouping variable 2 , if related to another

variable is prior to that variable. The alternative relations of the

grouping variable- to the dependent and independent variables were then

used to generate a four-category taxonomy which included all grouping

variables satisfying.a specifid set of relational res -ictions imposed

by that category.

The estimates from data grouped by Category I variables (2 related
--------

bo-h Y.X and X) were found to biased. This apparent disagreement

belweeii the simple model and odr alternative structure ean be explained

by the miSspecification of the simpfe model when the grouping variable

is directly related to both dependent and independent variables.

Further examination of this phenomenon led to a recommendation that the

relation between the grouping variable and the dependent variable be

minimized. Grouping on Category I or Category II variables was

di -ouraged because such variables are directly related to YX , and

few variables can be expected to meet ,thenecassary criteria that

be.unrelated to X and ER2 be nonzero at the same time.

The relative efficiencies of variables from the ,different categor -
,

ies were also examined. It was dete- _d that Categ

variables (2 related to X but not to _Y,--X

;
y III grouping

yield tle most efficient

grouping procedures so long asthre ar_ variables -ith efficiencies

greater than Category IV variables {whose efficiencies are on the order

of (m-1)/(N-1) where m is the number of groups and N , tie total
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number of observations.). It was suggested that for certain values of

and
13

Category I grouping, though slightly biased, can yield
YZ*X. XZ

more efficient estimates than either Category II or Category IV grouping.

We examined the possible causes of variations in the magnitude of

bias and the relative efficiency within categories of the taxonomy and

the special problems in grouping by nominal characteristics in Chapter 4..

The within-variable properties considered were (1) the coarseness of

grouping, (2) the distribution of observations among the groups, and

(3) the distribution of the independent variable within and among the

groups. As might be expected,.the most efficient estimates were found to

Calheide with variables that generated a large number of maximally-dis-

crete and compact groups.

We also considered-Waya-o"applying structural equation" methods

noninal muping characteristi-- in Chapter 4. A classification

scheme -roposed by Wiley was discussed wherein grouping variables are

categorized by their scale (nominal or interval) and by whether the groups-

in the study are the entire population (fixed) or only a sample from the

population of in erest (random). The nominal grouping variable 7, was

viewed as a surrogate for an underlying grouping variable Z has a

metric. Though Z is latent and unmeasurable, it can be estimated by

classification procedures describing group differences in Z Sampling

hies was saiq,to affect grouped estimates when the classes-of the group-

ing variable are unrepresentative of the population.

Dummy coding procedures used by economists were suggeated as A' Way

to incorporate the minal grouping characteris ic in our models. Dum y

coding is less time-consuming and complex than Wiley's procedure,. It

yields functions which can be compared directly with the parameters

genera-ed by ordered grouping characteristics.

181



163

described various procedures for analyzing the

effec s of groupingin the multiv riate case. Ofparticular interest

was a statistic developed by Feige --d-Watts (1972) for assessing the
v.

divergeace between fouped and ungrouped regression coefficients. Also,

we -howed that the results from the "structural equation" approach in

the t o-regresso. d-a'seagreed -with the findings in the Bingle-regressor

-ease.- Extension-of-the results from the--"Structural--eqUations" appro ch--

to more than two regressors is straightforward. However, the analysis
a

rapidly beconles-omplicated with additional regressors because of the

-necessity to speCify.the struct'ti al relations among all variables in

the model (including. thegrouping Variable).

Empiricalexamples of grouping in the single-regressor case were

presented in Chapter 6. In general, the results conformed to our expec-

tations and the predieLions from the structural equations approach were

reasonably accurate. The use of weighted composites of estimates from

different Irouping methods was demonstrated. These weighted composites

were recommended as a possible means of estimating coefficients when in-

formation on certain ,primary -variables is 411ected anonymbus137.-

When the within-category effects of the,different factors are com-

bined with our knowledge of the category and scale differences, several

-
principles evolve for sel cting a grouping variable wlich minimizes bias

and maxim es efficiency. A partial list of these principles in the

single-regressov..case includes the followingl

A. To obiain unbiased estimates of-tle'linear regression coeffi-
,

cient, choose a Z so that (in order of preference)

1) Z is related to X- but not to Y-X (Category III),

2) Z is not related to either X. orn_Y (Category IV),

or 3) related to Y-X but.not to X Category II).
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Categr Ill variables are preferable b= ause they yield

generally efficient estimators because the b ween-gronp

variation in the regressor is maximized.

When biased estimates are the only alternativ:. , choose Z so

that

i
s
as large as possible,

)(Z

a _ is as small as possible,
YZ-X

a
-YZ

is smaller than and
13XZ

4) the.ratio a- approaches as near as passible the ratio

Z -X

The efficiency of the grouped estimator increases as

1) ia approached- N ; o

2) average n increases when random measurement errors in X ,

are possible, buL decreases other

3) the correlation ratio qc approaches unity; or

4) the pooled w thin-group variance in the independent

variable becomes smaller; or

the degree of overlap among the within-group distributions

of the independent variable decreases.

There are obviously o her intangibles that cannot be dealt with by

general principles. There is always the problem -f degree of inveati-

gator control over the grouping process. As stated earlier, anonymous

collection of data on some primary variables sciously complicates

matters as does adding more regressors. We have tried to identify only

the strategic aspects of the process of determining the effects of

grouping and have left to futur- investigations-the practical details

application. P oper applica 'ion of these principles --quires that

investigator thoroughly understand the theoretical model in
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question, and no set of guid-lines can adequately ensure Alat this will

occur.

§IlageaLl2ps for iurtherInvestigaLLaa

At a number of points, we have noted areas where the present state

of knowledge on the complications due to data aggregation is weak and

further inve tigation is warranted. Here we indicate several of the

more interesting and pressing questions.

1. Nominal .Grouping Characteristics -- In the introductory

chapter, we described five research problems in which aspects

of data aggregation are encountered. The discussion that

followed focused almost entirely on questions that arise in

two contew [(c -conomy of analysis and (D) anonymously

colleCted data]. Perhaps the most important auestfon from

the perspective of educational researchers i how to determine

the effects of grouping on a nominal characteristic such as

school [problem (E)]. Our treatment of nominal variables in

Chapter 4 merely provides some suggestions about how this -o-k

might proceed. Much more resear: _ is necessary to dete mine

the special complications that arise in predicting the effects

of grouping on a nominal characteristic.

2 Missing Data and_Measuremen .Errors - The suggested utiliza-

tion of grouping in handling problems with missing data

[problem (A)] and measurement errors [problem (B)] requires

further elaboration and investigat on.

Weighted Composites. and Anonymously_Collected Data -- The

description of the use of aggregated data to overcome compl

cations with anonymously collected data [problem (D)] and the
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subseque t example which used weighted composites of estimates

frc-- grouped data to estima e coefficients represent a poten-

tially valuable new field for Planned application of data

aggregation. More work is necessary to establish the general-

ity of the technique of estimating individual-level relations

from weighted composites of between-group coefficients.

4. tivariate Models -- A more thorough investigation of the

effect- of grouping in models with multiple regressors is

highly desirable. The comparative utility of the "structural

equati s" approach and the procedures suggested by Feige and

Watts needs to be investig- d. Additionally, hardly anything

is known about the optimal grouping -ethod when the hypotheses

of interest posit some form of simultaneity ef causation in

wulti riete models.

5. ?IggIflation Over Ti e -- An investigation of whether principles

developed here apply when the grouping variable is some time

inteval ("year", "occasi n") tiould be of value. The results

may provide new insight into the partitioning of observation

periods in elassrc m process studie-

ppropriate Model711 -- We have purposely focused

on the conditions under which the estimates from grouped data

provide accurate or misleading information about relations

among measurements on individuals. It is evident that the

principles governing aggregation bias are a subset of the

problems that appear in econometrics lite ature under the

heading of "specification bias". Thg necessary interrelation

betNeen specification bias and aggregation bias needs to be

elaborated and communicated to the educational research
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ct aluity. This eiaLoration ould ri.cessarily include warnin_

about tha potential hazards of accepting global measur 0 of

associa (e.g., individual-level correlations) as accurately

reflecting the actual processes in operation. When there exist

group-to-group differences on the primary variables, it is often

more appropriate to conduct within-group analy es or to include

additional variables that account for group differences in the

model. This latter kind of a specification problem suggests

the interface between the analysis of covariance procedures and

the analysis of grouping effects.

-- In the literature on school effects,

investigators have begun to recognize that it may be necessary

to adjust for the lack of indepeneence among students within

classroois. Procedures-that combine within-class or within-

school analyses with analyses at a higher level of aggregation

dese ve more attention.

This list is,by_no means complete. However, it does accurately

reflect the-concerns over data aggregation in educational research and

directions for further inquiry by educational researchers.
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